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Introduction 21 

Sprint speed is one of the most distinctive and admired physical characteristics in 22 

sports. In most team sports (e.g., soccer, field hockey, handball, etc.), short sprints are 23 

defined as maximal sprinting from a standstill across a distance that does not result in 24 

deceleration at the finish. Peak anaerobic power is reached during the first few seconds 25 

(<5 𝑠) of maximal efforts (Mangine et al. 2014); however, the capacity to attain 26 

maximal sprint speed is athlete- and sport-specific. For instance, track and field 27 

sprinters are trained to achieve maximal speed later in a race (i.e., 50-60 𝑚) (Ward-28 

Smith 2001), whereas team sport athletes have sport-specific attributes and reach 29 

maximal speed much earlier (i.e., 30-40 𝑚) (Brown et al. 2004). The evaluation of short 30 

sprint performance is frequently included in a battery of fitness tests for various sports, 31 

regardless of the kinematic differences between athletes. 32 

The use of force plates is regarded as the gold standard for analyzing the mechanical 33 

features of sprinting; nevertheless, collecting the profile of a whole sprint presents 34 

practical and cost problems (Samozino et al. 2016; Morin et al. 2019). Radar and laser 35 

technology are frequently utilized laboratory-grade methods (Buchheit et al. 2014; 36 

Jiménez-Reyes et al. 2018; Marcote-Pequeño et al. 2019; Edwards et al. 2020) that are 37 

typically unavailable to sports practitioners. Timing gates are unquestionably the most 38 

prevalent method available for modeling and evaluating sprint performance. Multiple 39 

gates are placed at different distances to capture split times (e.g., 10, 20, 30, and 40 𝑚), 40 

which can now be incorporated into the method for determining sprint mechanical 41 

properties (Samozino et al. 2016; Morin et al. 2019). Practitioners can utilize the 42 

outcomes to explain individual differences, quantify the effects of training 43 

interventions, and gain a better knowledge of the limiting variables of performance. 44 

 45 



 

 

To ensure accurate short sprint parameter estimates using timing gates, the initial force 46 

production must be synced with start time, often referred to as “first movement” 47 

triggering (Haugen et al. 2012; Haugen and Buchheit 2016; Samozino et al. 2016; 48 

Haugen et al. 2019; Haugen, Breitschädel, and Seiler 2020; Haugen, Breitschädel, and 49 

Samozino 2020). This represents a challenge when collecting sprint data using timing 50 

gates and can substantially impact estimated parameters. From a measurement 51 

perspective, flying start distance is often recommended to avoid premature triggering of 52 

the timing system by lifted knees or swinging arms (Altmann et al. 2015; Haugen and 53 

Buchheit 2016; Altmann et al. 2017; Altmann et al. 2018; Haugen, Breitschädel, and 54 

Samozino 2020). Flying start can also result from body rocking during the standing 55 

start. Clearly, any flying start with a difference between the initial force production and 56 

the start time can lead to bias in estimated short sprint parameters. Since it is hard to get 57 

faster at a sprint, inconsistent starts can hide the effects of the training intervention. 58 

This work aims to explore the bias and sensitivity to detect changes due to flying start 59 

involved when estimating short sprint parameters under simulated conditions. In 60 

addition, two novel model definitions are proposed with the aim of minimizing the 61 

parameter bias and increasing sensitivity to detect changes.  This is needed to provide a 62 

theoretical understanding of the limits and expected errors of the short sprints modeling, 63 

which can later inform more practical studies involving athletes. 64 

Methods 65 

Mathematical model 66 

The mono-exponential Equation 1 has been used to model short sprints. It was first 67 

proposed by Furusawa et al. (1927) and made more popular by Clark et al. (2017) and 68 

Samozino et al. (2016). Equation 1 is the function for instantaneous horizontal velocity 69 



 

 

𝑣 given time 𝑡 and two model parameters: (1) Maximum sprinting speed (MSS; 70 

expressed in 𝑚𝑠−1) and (2) relative acceleration (TAU; expressed in 𝑠). 71 

𝑣(𝑡) = 𝑀𝑆𝑆 × (1 − 𝑒−
𝑡

𝑇𝐴𝑈)  (1) 72 

TAU represents the ratio of MSS to initial acceleration (MAC; maximal acceleration, 73 

expressed in 𝑚𝑠−2) (Equation 2). Note that TAU, given Equation 1, can be interpreted 74 

as the time required to reach a velocity equal to 63.2% of MSS. 75 

𝑀𝐴𝐶 =
𝑀𝑆𝑆

𝑇𝐴𝑈
  (2) 76 

Although TAU is utilized in the equations and afterward estimated, it is preferable to 77 

use and report MAC because it is simpler to understand, especially for practitioners and 78 

coaches. By deriving Equation 1, Equation 3 is obtained for horizontal acceleration. 79 

𝑎(𝑡) =
𝑀𝑆𝑆

𝑇𝐴𝑈
× 𝑒−

𝑡
𝑇𝐴𝑈  (3) 80 

By integrating Equation 1, the equation for distance covered (Equation 4) is obtained. 81 

𝑑(𝑡) = 𝑀𝑆𝑆 × (𝑡 + 𝑇𝐴𝑈 × 𝑒−
𝑡

𝑇𝐴𝑈) − 𝑀𝑆𝑆 × 𝑇𝐴𝑈  (4) 82 

Model parameters estimation using timing gates split times 83 

Table 1 contains sample split times measured during 40 𝑚 sprint performance using 84 

timing gates positioned at 5, 10, 20, 30, and 40 𝑚. 85 

 86 

[Insert Table 1 here] 87 

 88 

To estimate model parameters using split times, distance is a predictor, and time is the 89 

outcome variable; hence, Equation 4 takes the form of Equation 5 (Vescovi and 90 

Jovanović 2021; Jovanović and Vescovi 2022).  91 



 

 

𝑡(𝑑) = 𝑇𝐴𝑈 × 𝑊 (−𝑒
−𝑑

𝑀𝑆𝑆×𝑇𝐴𝑈 − 1) +
𝑑

𝑀𝑆𝑆
+ 𝑇𝐴𝑈  (5) 92 

𝑊 in Equation 5 represents Lambert’s W function, which is defined to be the 93 

multivalued inverse of the function 𝑓(𝑤) = 𝑤𝑒𝑤 (Corless et al. 1996; Goerg 2022). 94 

Equation 4, in which time is the predictor and distance is the outcome variable, is 95 

commonly employed in research (Morin 2017; Morin and Samozino 2019; Stenroth and 96 

Vartiainen 2020). This method should be avoided since reversing the predictor and 97 

outcome variables in a regression model may create biased estimated parameters 98 

(Motulsky 2018, p. 341). This bias may not be practically significant for profiling short 99 

sprints, but it is a statistically flawed practice and should be avoided. It is thus 100 

preferable to utilize statistically correct Equation 5 to estimate model MSS and TAU. 101 

Estimating MSS and TAU parameters using Equation 5 as the model definition is 102 

performed using non-linear least squares regression. To the best of my knowledge, 103 

scientists, researchers, and coaches have been performing short sprints modeling using 104 

the built-in solver function of Microsoft Excel (Microsoft Corporation, Redmond, 105 

Washington, United States) (Samozino et al. 2016; Clark et al. 2017; Morin 2017; 106 

Morin et al. 2019; Stenroth et al. 2020; Stenroth and Vartiainen 2020). These, and 107 

additional functionalities, have been recently implemented in the open-source {shorts} 108 

package (Vescovi and Jovanović 2021; Jovanović 2022; Jovanović and Vescovi 2022) 109 

for R-language (R Core Team 2022), which utilizes the nlsLM() function from the 110 

{minpack.lm} package (Elzhov et al. 2022). Compared to the built-in solver function of 111 

Microsoft Excel, the {shorts} package represents a more feature-rich, flexible, 112 

transparent, and reproducible environment for modeling short sprints. It is used in this 113 

study to estimate model parameters. 114 

Using the split times from Table 1, estimated MSS, TAU, and MAC parameters equal to 115 

9.02 𝑚𝑠−1, 1.14 𝑠, and 7.94 𝑚𝑠−2, respectively. Maximal relative power (PMAX; 116 



 

 

expressed in 𝑊/𝑘𝑔) is an additional parameter often estimated and reported (Samozino 117 

et al. 2016; Morin et al. 2019). PMAX is calculated using Equation 6. This method of 118 

PMAX estimation disregards the air resistance and thus represents net or relative 119 

propulsive maximal power. Calculated PMAX using estimated MSS and MAC 120 

parameters equal to 17.91 𝑊/𝑘𝑔. 121 

𝑃𝑀𝐴𝑋 =
𝑀𝑆𝑆 × 𝑀𝐴𝐶

4
  (6) 122 

Problems with parameters estimation using split times due to flying start and 123 

reaction time 124 

To demonstrate impact of the flying start and reaction time on estimated parameters, 125 

imagine three hypothetical triplet brothers, Mike, Phil, and John, with the same short 126 

sprint characteristics: MSS equal to 9 𝑚𝑠−1, TAU equal to 1.125 𝑠, MAC equal to 8 127 

𝑚𝑠−2, and PMAX equal to 18 𝑊/𝑘𝑔 (these represent true short sprint parameters). 128 

They all performed a 40 𝑚 sprint from a standing start using timing gates positioned at 129 

5, 10, 20, 30, and 40 𝑚. For Mike and Phil, the timing system is activated by the initial 130 

timing gate (i.e., when they cross the beam) at the start of the sprint (i.e., 𝑑 = 0 𝑚). For 131 

John, the timing system is activated after the gunfire. 132 

Mike represents the theoretical model, in which it is assumed that the initial force 133 

production and the timing initiation are perfectly synchronized. Mike’s split have 134 

already been enlisted in Table 1. Phil decided to move slightly behind the initial timing 135 

gate (i.e., for 0.5 𝑚) and used body rocking to initiate the sprint start. In other words, 136 

Phil used a flying start, a common scenario when testing field sports athletes. Since the 137 

gunfire triggers John’s start, his split times have an additional reaction time of 0.2 𝑠. 138 

This is similar to a scenario where the athlete prematurely triggers a timing system 139 



 

 

when standing too close to the initial timing gate. John’s data can thus be used to 140 

demonstrate the effects of this scenario on the estimated parameters. 141 

Timing gates utilized in this theoretical example provide precision to two decimals (i.e., 142 

closest 10 𝑚𝑠), representing a measurement error source. A graphical representation of 143 

the sprint splits can be found in Figure 1. 144 

 145 

[Insert Figure 1 here] 146 

 147 

Estimated sprint parameters can be found in Table 2. As seen from the results (Table 2), 148 

estimated short sprint parameters for all three brothers differ from the true parameters 149 

used to generate the data (i.e., their true short sprint characteristics). All three brothers 150 

have a bias in estimated parameters due to timing gates’ precision to 2 decimals (i.e., 10 151 

𝑚𝑠). Bias in estimated parameters in Phil’s case is due to the flying start involved, 152 

while in John’s case, it is due to the reaction time involved in the split times. 153 

 154 

[Insert Table 2 here] 155 

How to overcome missing the initial force production when using timing gates? 156 

The literature suggests using a correction factor of +0.5 𝑠 as a viable solution (i.e., 157 

simply adding +0.5 𝑠 to split times) to convert to “first movement” triggering when 158 

utilizing recommended 0.5 𝑚 flying distance behind the initial timing gate (Haugen et 159 

al. 2012; Haugen and Buchheit 2016; Haugen et al. 2019; Haugen, Breitschädel, and 160 

Seiler 2020). Intriguingly, the average difference between the standing start with a 161 

photocell trigger and a block start to gunfire for a 40-meter sprint was 0.27 𝑠 (Haugen et 162 

al. 2012). Consequently, although a timing correction factor is required to prevent 163 



 

 

further inaccuracies in estimates of kinetic variables (e.g., overestimate power), a 164 

correction factor that is too big would have the opposite effect (e.g., underestimate 165 

power). 166 

The Estimated time correction model 167 

Instead of using apriori time correction from the literature, this parameter may be 168 

estimated using the supplied data, together with MSS and TAU. Stenroth et al. (2020) 169 

propose the same approach, titled the time shift method, and the estimated parameter, 170 

named the time shift parameter. In accordance with the current literature, this parameter 171 

is termed time correction (TC) (Vescovi and Jovanović 2021). 172 

Using the original Equation 5 to implement the TC parameter now yields the new 173 

Equation 7. Equation 7 is utilized as the model definition in the Estimated TC model, as 174 

opposed to the model using Equation 5, which is termed the No correction model in this 175 

study. The model in which TC is fixed (i.e., by simply adding TC to split times) is 176 

termed the Fixed TC model. 177 

𝑡(𝑑) = 𝑇𝐴𝑈 × 𝑊 (−𝑒
−𝑑

𝑀𝑆𝑆×𝑇𝐴𝑈 − 1) +
𝑑

𝑀𝑆𝑆
+ 𝑇𝐴𝑈 − 𝑇𝐶  (7) 178 

From a regression perspective, the TC parameter can be viewed as an intercept. It can 179 

be beneficial when assuming a fixed time shift is involved (i.e., reaction time or 180 

premature triggering of the timing equipment). Comparing the split times of Mike and 181 

John in Figure 1, it can be noticed that the lines are parallel. In this scenario, the 182 

Estimated TC model can remove bias between Mike and John. The Estimated TC model 183 

can also help remove bias in estimated parameters in Phil’s case. However, when 184 

looking closely at Figure 1, it can be noticed that Phil’s and Mike’s lines are not 185 

parallel. This is because there is already some velocity when the initial timing gate is 186 

triggered; thus, the time shift is not constant. 187 



 

 

These models (i.e., Fixed TC of +0.3, +0.5 𝑠, and Estimated TC model) are applied to 188 

Mike, Phil, and John’s split times. The estimated model parameters can be found in 189 

Table 3, and previously estimated parameter values using the No correction model. As 190 

can be noted from Table 3, adding +0.3 𝑠 worked well for Phil in terms of approaching 191 

true parameter values, while adding +0.5 𝑠 was detrimental in un-biasing estimated 192 

parameters. The Estimated TC model worked well for all three athletes in terms of un-193 

biasing the parameter estimates. The estimated TC parameter for John was also very 194 

close to the true reaction time of 0.2 𝑠. 195 

Estimated flying distance model 196 

Although the Estimated TC model performed well in Phil’s case (triplet brother doing 197 

flying start), instead of assuming time shift (which helps in un-biasing the estimates 198 

compared to the No correction model), the model definition that assumes flying start 199 

distance (FD) involved in the data-generating-process (DGP) can be utilized. This 200 

Estimated FD model utilizes Equation 8 as the model definition. 201 

𝑡(𝑑) = (𝑇𝐴𝑈 × 𝑊 (−𝑒
−𝑑+𝐹𝐷

𝑀𝑆𝑆×𝑇𝐴𝑈 − 1) +
𝑑 + 𝐹𝐷

𝑀𝑆𝑆
+ 𝑇𝐴𝑈)

 − (𝑇𝐴𝑈 × 𝑊 (−𝑒
𝐹𝐷

𝑀𝑆𝑆×𝑇𝐴𝑈 − 1) +
𝐹𝐷

𝑀𝑆𝑆
+ 𝑇𝐴𝑈)

  (8) 202 

Table 3 contains all model estimates for three brothers, including the Estimated FD 203 

model. It can be noticed that the Estimated FD model unbiased estimates for Phil but 204 

failed to be estimated for John (brother that starts at gunfire and has reaction time 205 

involved in his split times). This is because the Estimated FD model is ill-defined under 206 

that scenario and cannot have a negative flying distance. 207 

Overall, each model definition has assumed the mechanism of the data generation. No 208 

correction model assumes perfect synchronization of the sprint initiation with the start 209 

of the timing. The Estimated TC model introduces a simple intercept that can help 210 



 

 

estimate parameters when an assumed time shift is involved (e.g., when reaction time is 211 

involved or premature triggering of the initial timing gate). Estimated TC can also be 212 

used when flying start is utilized, but it assumes the constant time shift, which is not the 213 

case in that scenario due to already gained velocity at the start. The Estimated FD 214 

model assumes there is a flying sprint involved in the DGP and, as shown in Table 3, 215 

can be ill-defined when there is no flying distance involved but there is a time shift. All 216 

three models assume athlete accelerates according to the mono-exponential Equation 1. 217 

 218 

[Insert Table 3 here] 219 

 220 

Simulation design 221 

To explore the behavior of these three models under simulated and known conditions, 222 

short sprints data is generated using true MSS (ranging from 7 to 11 𝑚𝑠−1, in 223 

increments of 0.05 𝑚𝑠−1, resulting in a total of 81 unique values), MAC (ranging from 224 

7 to 11 𝑚𝑠−2, in increments of 0.05 𝑚𝑠−2, resulting in a total of 81 unique values), and 225 

flying distance (ranging from 0 to 0.5 𝑚, in increments of 0.01 𝑚, resulting in a total of 226 

51 unique values). Each flying sprint distance consisted of 6,561 MSS and MAC 227 

combinations. Split times are estimated using timing gates positioned at 5, 10, 20, 30, 228 

and 40 𝑚, with the rounding to the closest 10 𝑚𝑠. In total, there were 334,611 sprints 229 

simulated. 230 

Statistical analysis 231 

MSS, MAC, TAU, and PMAX are estimated for each simulated sprint using the No 232 

correction, Estimated TC, and Estimated FD models. The agreement between true and 233 



 

 

estimated parameter values is evaluated using the percent difference (%𝐷𝑖𝑓𝑓) estimator 234 

(Equation 9). 235 

%𝐷𝑖𝑓𝑓 = 100 ×
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 − 𝑡𝑟𝑢𝑒

𝑡𝑟𝑢𝑒
  (9) 236 

The distribution of the simulated %𝐷𝑖𝑓𝑓 is summarized using 𝑚𝑒𝑑𝑖𝑎𝑛 and 95% 237 

highest-density continuous interval (𝐻𝐷𝐶𝐼) (Kruschke 2015; Kruschke and Liddell 238 

2018a; Kruschke and Liddell 2018b; Kruschke 2018; Makowski et al. 2019). To 239 

provide magnitude interpretation of the %𝐷𝑖𝑓𝑓, region of practical equivalence 240 

(𝑅𝑂𝑃𝐸), as well as the proportion of the simulations that lie within 𝑅𝑂𝑃𝐸 241 

(𝑖𝑛𝑠𝑖𝑑𝑒 𝑅𝑂𝑃𝐸; expressed as a percentage) (Kruschke 2015; Kruschke and Liddell 242 

2018a; Kruschke and Liddell 2018b; Kruschke 2018; Makowski et al. 2019; Jovanović 243 

2020), are calculated. 𝑅𝑂𝑃𝐸 is assumed to be equal to 95% 𝐻𝐷𝐶𝐼 of the %𝐷𝑖𝑓𝑓 using 244 

the No correction model and no flying distance. Theoretically, 𝑅𝑂𝑃𝐸 represents the 245 

lowest error (i.e., the best agreement) that can be achieved. It is limited purely by the 246 

timing gates' measurement precision (i.e., rounding to the closest 10 𝑚𝑠) and simulated 247 

parameters. 248 

In addition to estimating agreement between true and estimated parameter values, 249 

practitioners are often interested in whether they can use estimated values to track 250 

changes in the true parameter values. A minimal detectable change estimator with 95% 251 

confidence (%𝑀𝐷𝐶95) (Furlan and Sterr 2018; Jovanović 2020) is utilized to estimate 252 

this sensitivity. The %𝑀𝐷𝐶95 value might be regarded as the minimum amount of 253 

change that needs to be observed in the estimated parameter for it to be considered a 254 

true change. %𝑀𝐷𝐶95 is calculated using percent residual standard error (%𝑅𝑆𝐸; 255 

Equation 10) of the linear regression between true (predictor) and estimated parameter 256 

values (outcome) (Equation 11). Since simulated data with the known true values are 257 



 

 

utilized, %𝑅𝑆𝐸 represents the percent standard error of the measurement (%𝑆𝐸𝑀) in 258 

the estimated parameters. 259 

%𝑅𝑆𝐸 =
√∑ (100 ×

𝑦𝑖 − 𝑦𝑖̂

𝑦𝑖̂
)

2
𝑁
𝑖=1

𝑁 − 2
  (10) 260 

%𝑀𝐷𝐶95 = %𝑅𝑆𝐸 × √2 × 1.96  (11) 261 

In addition to providing %𝑀𝐷𝐶95 for the estimated parameters, the lowest %𝑀𝐷𝐶95 is 262 

estimated using the No correction model and no flying distance (%𝑀𝐷𝐶95
𝑙𝑜𝑤𝑒𝑠𝑡). 263 

Theoretically, %𝑀𝐷𝐶95
𝑙𝑜𝑤𝑒𝑠𝑡 represents the lowest %𝑀𝐷𝐶95 that can be achieved, and it 264 

is limited purely by the timing gates’ measurement precision (i.e., rounding to the 265 

closest 10 𝑚𝑠) and simulated parameters. %𝑀𝐷𝐶95
𝑙𝑜𝑤𝑒𝑠𝑡 is used only as a reference to 266 

evaluate estimated parameters’ %𝑀𝐷𝐶95. 267 

The analyses are performed on both pooled dataset (i.e., using all flying distances) and 268 

across every flying distance. It is hypothesized that the Estimated FD model will have 269 

the highest 𝑖𝑛𝑠𝑖𝑑𝑒 𝑅𝑂𝑃𝐸 estimates and the lowest %𝑀𝐷𝐶95 estimates. Statistical 270 

analyses and graph construction were performed using the software R 4.2.1 (R Core 271 

Team 2022) in RStudio (version 2022.07.1+554). 272 

Results 273 

Model fitting 274 

Table 4 contains failed model fitting for the Estimated FD model. These were 275 

disregarded from further analysis. The reason for these failed model fittings is probably 276 

the combination of the very small flying distance and the measurement precision of the 277 

timing gates, resulting in an ill-defined model that cannot be fitted. 278 

 279 



 

 

[Insert Table 4 here] 280 

Percent difference 281 

Region of practical equivalence 282 

Estimated ROPEs are equal to -0.3 to 0.33% for MSS, -0.73 to 0.74% for MAC, -1.03 283 

to 1% for TAU, and -0.5 to 0.5% for PMAX (Table 5) and are depicted as grey 284 

horizontal bars in Figure 2 and Figure 3.  285 

Pooled analysis 286 

The pooled analysis is performed using all flying distances pooled together. As such, 287 

the pooled analysis represents the overall estimate of the agreement between true and 288 

estimated parameter values across simulated conditions. Figure 2 depicts the 289 

distribution of the pooled %𝐷𝑖𝑓𝑓 estimator. Table 5 contains the pooled analysis results 290 

summary for every model and short sprint parameter. 291 

 292 

[Insert Figure 2 here] 293 

[Insert Table 5 here] 294 

Analysis across flying distances 295 

Figure 3 depicts the analysis results for every flying distance in the simulation. 296 

𝐼𝑛𝑠𝑖𝑑𝑒 𝑅𝑂𝑃𝐸 parameter estimates are calculated and depicted in Figure 4 for easier 297 

comprehension. 298 

[Insert Figure 3 here] 299 

[Insert Figure 4 here] 300 



 

 

Minimal detectable change 301 

Lowest Minimum Detectable Change 302 

Estimated %𝑀𝐷𝐶𝑠95
𝑙𝑜𝑤𝑒𝑠𝑡  is equal to 0.45% for MSS, 1.06% for MAC, 1.47% for TAU, 303 

and 0.7% for PMAX (column lowest in Table 6) and dashed grey horizontal lines in 304 

Figure 5.   305 

Pooled analysis 306 

Estimated parameters’ %𝑀𝐷𝐶𝑠95 for the No correction model range from 3 to 44%, for 307 

the Estimated TC range from 1 to 8%, and for the Estimated FD range from 1 to 7% 308 

(Table 6). 309 

 310 

[Insert Table 6 here] 311 

Analysis across flying distances 312 

The estimated %𝑀𝐷𝐶𝑠95 across flying distances are depicted in Figure 5. For every 313 

short sprint parameter, Estimated TC showed stable and lower %𝑀𝐷𝐶𝑠95 compared to 314 

Estimated FD (from 1 to 6% and from 1 to 8%, respectively). The No correction model 315 

showed the lowest %𝑀𝐷𝐶𝑠95 for the MAC and TAU parameters, ranging from 1 to 5% 316 

and from 1 to 3%, respectively. 317 

 318 

[Insert Figure 5 here] 319 



 

 

Discussion 320 

The aim of this study was to estimate the agreement between true short sprint 321 

parameter values and estimated parameter values using three model definitions 322 

under simulated conditions. This agreement is estimated using the %𝑫𝒊𝒇𝒇 323 

estimator (Equation 9). In addition to estimating agreement, this study aims to 324 

estimate the sensitivity of the models to detect changes in true short sprint 325 

parameter values. This sensitivity is estimated using the %𝑴𝑫𝑪𝟗𝟓 estimator 326 

(Equation 11). Agreement and sensitivity analysis is performed using the pooled 327 

dataset and across simulated flying sprint distances. 328 

 329 

Agreement between true and estimated short sprint parameters 330 

Region of practical equivalence 331 

An interesting finding is that, given simulation parameters (particularly the precision of 332 

the timing gates to the closest 10 𝑚𝑠), MSS has the lowest 𝑅𝑂𝑃𝐸 compared to other 333 

short sprint parameters (Table 5 and Figure 2). Since 𝑅𝑂𝑃𝐸 represents the lowest 334 

estimation error, MSS is the parameter that could be, given this theoretical simulation, 335 

estimated with the most precision. In contrast, TAU and MAC can be estimated with the 336 

least precision. 337 

Pooled analysis 338 

As expected, the Estimated FD model performed with the highest 𝑖𝑛𝑠𝑖𝑑𝑒 𝑅𝑂𝑃𝐸 339 

parameter values (from 20 to 72%), with the narrowest 95% 𝐻𝐷𝐶𝐼s (from -5 to 5%), 340 

and no bias involved (Table 5 and Figure 2). On the other hand, the No correction 341 

model performed poorly, with the lowest inside 𝑅𝑂𝑃𝐸 parameter values (from 2 to 2%), 342 



 

 

with the widest 95% 𝐻𝐷𝐶𝐼s (from -46 to 80%), and with the apparent bias indicated 343 

with the 𝑚𝑒𝑑𝑖𝑎𝑛 parameter values being outside of 𝑅𝑂𝑃𝐸 (from -35 to 49%) (Table 5 344 

and Figure 2). In addition, a visual inspection of Figure 2 indicates a non-normal 345 

distribution of estimated %𝐷𝑖𝑓𝑓 parameter values, demanding further analysis across 346 

flying distance values. The Estimated TC model performed similarly to the Estimated 347 

FD model with a slightly lower 𝑖𝑛𝑠𝑖𝑑𝑒 𝑅𝑂𝑃𝐸 parameter values (from 9 to 67%), wider 348 

95% 𝐻𝐷𝐶𝐼s (from -9 to 8%), and with obvious bias, although much smaller than the No 349 

correction model bias (from -3 to 3%) (Table 5 and Figure 2). 350 

Analysis across flying distances 351 

As expected, the No correction model demonstrated increasing bias as the flying 352 

distance increased (from -46 to 76%), the widest 95% 𝐻𝐷𝐶𝐼s (from -47 to 84%), and 353 

the lowest 𝑖𝑛𝑠𝑖𝑑𝑒 𝑅𝑂𝑃𝐸 estimated parameter values (Figures 3 and 4). Estimated TC 354 

showed a small bias trend across flying distances (from -6 to 6%), resulting in 355 

decreasing 𝑖𝑛𝑠𝑖𝑑𝑒 𝑅𝑂𝑃𝐸 performance (from 0 to 75%; see Figure 4), although with 356 

much smaller 95% 𝐻𝐷𝐶𝐼s (from -10 to 11%) compared to No correction model. 357 

Estimated FD, as hypothesized, showed no bias and thus a stable 𝑖𝑛𝑠𝑖𝑑𝑒 𝑅𝑂𝑃𝐸 358 

performance across flying distances (see Figure 4), with minimal 95% 𝐻𝐷𝐶𝐼s (from -5 359 

to 6%). 360 

Sensitivity to detect changes in true short sprint parameters 361 

Lowest Minimum Detectable Change 362 

An interesting finding is that, given simulation parameters (particularly the precision of 363 

the timing gates to the closest 10 𝑚𝑠), MSS has the lowest %𝑀𝐷𝐶𝑠95
𝑙𝑜𝑤𝑒𝑠𝑡  compared to 364 

other short sprint parameters (Table 6). Since %𝑀𝐷𝐶𝑠95
𝑙𝑜𝑤𝑒𝑠𝑡  represents the lowest 365 



 

 

minimal detectable change, MSS is the parameter whose change could be, given this 366 

theoretical simulation, estimated with the most precision. In contrast, TAU and MAC 367 

changes can be estimated with the least precision. 368 

Pooled analysis 369 

Pooled %𝑀𝐷𝐶𝑠95 represents an estimate of the sensitivity to detect true change with 370 

95% confidence when the flying start distance is not standardized (but within simulation 371 

parameter limits (ranging from 0 to 0.5 𝑚). As expected, the No correction model 372 

demonstrates the highest %𝑀𝐷𝐶𝑠95 (from 3 to 44%), while Estimated TC and 373 

Estimated FD demonstrated much smaller %𝑀𝐷𝐶𝑠95 (from 1 to 8% and from 1 to 7%, 374 

respectively) (Table 6). 375 

An interesting finding is that the MSS parameter showed very low %𝑀𝐷𝐶𝑠95 across 376 

models (from 1 to 3%), even for the No correction model. This indicates that even the 377 

non-standardized short sprint monitoring (i.e., without standardized flying distance) 378 

using the No correction model, given simulation parameters, can be used to track 379 

changes in MSS. TAU, MAC, and PMAX parameters, on the other hand, demand a 380 

much larger %𝑀𝐷𝐶𝑠95 (from 7 to 44%, from 6 to 37%, and from 6 to 36%, 381 

respectively). 382 

Analysis across flying distances 383 

When estimated across flying distances, %𝑀𝐷𝐶𝑠95 shows interesting and surprising 384 

patterns (Figure 5). For every short sprint parameter, Estimated TC showed stable and 385 

lower %𝑀𝐷𝐶𝑠95 compared to Estimated FD (from 1 to 6% and from 1 to 8%, 386 

respectively). This is surprising because even if it demonstrated biased estimates of 387 

short sprint parameters (Figures 3 and 4) compared to the Estimated FD, Estimated TC 388 

might be more sensitive to detect changes, given simulation parameters. 389 



 

 

Another surprising finding is that the No correction model, even if shown to be highly 390 

biased in estimating short sprint parameter values (Figures 3 and 4), showed the lowest 391 

%𝑀𝐷𝐶𝑠95 for the MAC and TAU parameters (from 1 to 5% and from 1 to 3% 392 

respectively). This indicates that when short sprint measurement is standardized (i.e., 393 

athletes perform with the same flying distance), given the simulation parameters, the No 394 

correction model can be the most sensitive model to detect changes in MAC and TAU 395 

parameters. This is unfortunately not the case for the MSS and PMAX parameters (from 396 

0 to 3% and from 1 to 9%, respectively) (Figure 5). 397 

Overall, when it comes to estimating changes in short sprint parameters, change in MSS 398 

is the most sensitive to be detected (from 0 to 3%) compared to MAC (from 1 to 7%), 399 

TAU (from 1 to 8%), and PMAX (from 1 to 9%) (Figure 5). 400 

Conclusions 401 

The simulation study employed demonstrated some expected and unexpected theoretical 402 

findings. Among the expected findings are (1) the bias and low 𝑖𝑛𝑠𝑖𝑑𝑒 𝑅𝑂𝑃𝐸 403 

performance in estimating short sprint parameters using the No correction model, (2) 404 

more negligible bias and higher 𝑖𝑛𝑠𝑖𝑑𝑒 𝑅𝑂𝑃𝐸 for the Estimated TC model, and (3) no 405 

bias and highest 𝑖𝑛𝑠𝑖𝑑𝑒 𝑅𝑂𝑃𝐸 for the Estimated FD model. The unexpected finding of 406 

this study is the performance of the No correction model in sensitivity of estimating the 407 

change of the MAC and TAU parameters, which outperformed the other two models. 408 

When estimating short sprint parameters across models, given simulation parameters, 409 

MSS and change in MSS can be estimated more precisely compared to TAU, MAC, 410 

and PMAX parameters and their changes. 411 

In addition to model performances, this simulation study provided the theoretical 412 

𝑅𝑂𝑃𝐸s and %𝑀𝐷𝐶𝑠95
𝑙𝑜𝑤𝑒𝑠𝑡  estimates. These could be useful for further validity and 413 



 

 

reliability studies evaluating short sprint model performance involving real athletes by 414 

providing minimal theoretical values one can achieve with timing gates positioned at 415 

the exact distances with the exact time rounding.   416 

The takeaway message for the practitioners is that besides standardizing the sprint 417 

starting technique for the short sprint performance monitoring, it would be wise to 418 

utilize and track the results of all three models. The Estimated FD model will provide 419 

unbiased estimates of the current performance, but the No correction model might be 420 

more sensitive in detecting changes in TAU and MAC parameters. 421 

This practical conclusion should be taken with caution since it is based on the results of 422 

this theoretical simulation. Additional studies involving real athletes in evaluating the 423 

performance of these three models are needed. These studies should involve estimating 424 

the short sprint parameters agreement between gold-standard (i.e., criterion) measure 425 

(e.g., radar gun, laser gun, or video analysis) and practical measure using timing gates 426 

with different timing initiation (e.g., crossing the beam, foot pressing on force sensor or 427 

leaving the ground) under different flying start conditions and distances (e.g., start on 428 

the line, start at 0.5 𝑚 behind the initial timing gate, use of body-rocking) to practically 429 

demonstrate bias introduced when timing initiation is not synchronizes with initial force 430 

application. In addition to theoretical findings, such studies will provide model 431 

performance estimates when biological variability is involved in short sprints, which is 432 

not considered in the current study. One such study is currently in preparation. 433 
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Table 1: Sample split times measured during 40 𝑚 sprint performance using timing 604 

gates positioned at 5, 10, 20, 30, and 40 𝑚. 605 

Distance (m) Split time (s) 

5 1.34 

10 2.06 

20 3.29 

30 4.44 

40 5.56 

 606 

  607 



 

 

Table 2: Estimated sprint parameters for Mike, Phil, and John. All three brothers have 608 

identical sprint performance but utilize different sprint starts, which results in different 609 

split times, and thus different sprint parameter estimates. Due to the timing gates’ 610 

precision to 2 decimals (i.e., 10 𝑚𝑠), estimated Mike’s parameters also differ from the 611 

true values. 612 

Athlete MSS TAU MAC PMAX 

True 9.00 1.12 8.00 18.0 

     

Mike (theoretical) 9.02 1.14 7.94 17.9 

Phil (flying start) 8.60 0.61 14.00 30.1 

John (gunfire) 9.59 1.62 5.93 14.2 

Note. MSS – maximum sprinting speed (expressed in 𝑚𝑠−1); TAU – relative acceleration (expressed in seconds); MAC – maximum 613 

acceleration (expressed in 𝑚𝑠−2); PMAX – maximal relative power (expressed in 𝑊/𝑘𝑔) 614 

  615 



 

 

Table 3: Estimated sprint parameters for Mike, Phil, and John for (1) No correction, (2) 616 

Fixed time corrections (Fixed TC) with +0.3s and +0.5s corrections, (3) Estimated time 617 

correction (Estimated TC), and (4) Estimated flying start distance (Estimated FD) 618 

models. 619 

Model Athlete MSS TAU MAC PMAX TC FD 

 True 9.00 1.12 8.00 18.0   

        

No correction 

 

Mike (theoretical) 9.02 1.14 7.94 17.9   

Phil (flying start) 8.60 0.61 14.00 30.1   

John (gunfire) 9.59 1.62 5.93 14.2   

        

Fixed +0.3s TC Mike (theoretical) 10.01 1.93 5.19 13.0   

Phil (flying start) 9.05 1.13 8.02 18.2   

John (gunfire) 11.29 2.79 4.05 11.4   

        

Fixed +0.5s TC Mike (theoretical) 11.29 2.79 4.05 11.4   

Phil (flying start) 9.62 1.61 5.98 14.4   

John (gunfire) 13.67 4.26 3.21 11.0   

        

Estimated TC Mike (theoretical) 9.04 1.15 7.86 17.8 0.01  

Phil (flying start) 9.00 1.08 8.35 18.8 0.28  

John (gunfire) 9.04 1.15 7.86 17.8 -0.19  

        

Estimated FD Mike (theoretical) 9.04 1.15 7.86 17.8  0.00 

Phil (flying start) 9.03 1.16 7.82 17.7  0.54 

John (gunfire)a       

Note. MSS – maximum sprinting speed (expressed in 𝑚𝑠−1); TAU – relative acceleration (expressed in seconds); MAC – maximum 620 

acceleration (expressed in 𝑚𝑠−2); PMAX – maximal relative power (expressed in 𝑊/𝑘𝑔); TC – time correction (expressed in 621 

second); FD – flying start distance (expressed in meters) 622 



 

 

a Failed to be estimated due to the ill-defined model for the time-reaction scenario  623 



 

 

Table 4: Failed model fittings for the Estimated flying start distance (Estimated FD) 624 

model. 625 

Flying distance (m) Not fitted Total Not fitted (%) 

0.00 1765 6561 26.90 

0.01 12 6561 0.18 

0.02 16 6561 0.24 

0.03 10 6561 0.15 

0.04 4 6561 0.06 

0.05 1 6561 0.02 

  626 



 

 

Table 5: Region of practical equivalence (𝑅𝑂𝑃𝐸), a summary of percent difference 627 

(%𝐷𝑖𝑓𝑓) distribution, and percentage of the simulations that lie within the region of 628 

practical equivalence (𝑖𝑛𝑠𝑖𝑑𝑒 𝑅𝑂𝑃𝐸) estimated using pooled simulation dataset for (1) 629 

No correction, (2) Estimated time correction (Estimated TC), and (3) Estimated flying 630 

start distance (Estimated FD) models. 631 

Parameter ROPE (%) Model % Diff Inside ROPE (%) 

MSS 

 

-0.3 to 0.33% No correction median -3%, 95% HDCI [-7 to 0%] 2% 

Estimated TC median 0%, 95% HDCI [-1 to 0%] 67% 

Estimated FD median 0%, 95% HDCI [-1 to 1%] 72% 

     

MAC -0.73 to 0.74% No correction median 49%, 95% HDCI [11 to 80%] 2% 

Estimated TC median 3%, 95% HDCI [-2 to 8%] 12% 

Estimated FD median 0%, 95% HDCI [-4 to 4%] 25% 

     

TAU -1.03 to 1% No correction median -35%, 95% HDCI [-46 to -11%] 2% 

Estimated TC median -3%, 95% HDCI [-9 to 2%] 16% 

Estimated FD median 0%, 95% HDCI [-5 to 5%] 31% 

     

PMAX -0.5 to 0.5% 

 

No correction median 44%, 95% HDCI [6 to 73%] 2% 

Estimated TC median 3%, 95% HDCI [-2 to 8%] 9% 

Estimated FD median 0%, 95% HDCI [-4 to 4%] 20% 

Note. MSS – maximum sprinting speed; TAU – relative acceleration; MAC – maximum acceleration; PMAX – maximal relative 632 

power HDCI - highest-density continuous interval  633 



 

 

Table 6:  Minimal detectable change using 95% confidence level (%𝑀𝐷𝐶𝑠95) 634 

estimated using pooled simulation dataset for (1) No correction, (2) Estimated time 635 

correction (Estimated TC), and (3) Estimated flying start distance (Estimated FD) 636 

models. 637 

Parameter lowest No correction Estimated TC Estimated FD 

MSS 0.45 % 3 % 1 % 1 % 

MAC 1.06 % 37 % 7 % 6 % 

TAU 1.47 % 44 % 8 % 7 % 

PMAX 0.7 % 36 % 7 % 6 % 

Note. MSS – maximum sprinting speed; TAU – relative acceleration; MAC – maximum acceleration; PMAX – maximal relative 638 

power  639 



 

 

 640 

Figure 1: Phil, Mike, and John split times over a 40 𝑚 distance. All three brothers have 641 

identical sprint performances but utilize different sprint starts, resulting in different split 642 

times.  643 



 

 

 644 

Figure 2: Pooled distribution of the percent difference (%𝐷𝑖𝑓𝑓) for (1) No correction, 645 

(2) Estimated time correction (Estimated TC), and (3) Estimated flying start distance 646 

(Estimated FD) models. Error bars represent the distribution 𝑚𝑒𝑑𝑖𝑎𝑛 and 95% highest-647 

density continuous interval (95% 𝐻𝐷𝐶𝐼). A grey area represents the parameter region 648 

of practical equivalence (𝑅𝑂𝑃𝐸) (assumed to be equal to 95% 𝐻𝐷𝐶𝐼 of the %𝐷𝑖𝑓𝑓 649 

using the No correction model and no flying distance). 650 

Note. MSS – maximum sprinting speed; TAU – relative acceleration; MAC – maximum acceleration; PMAX – maximal relative 651 

power  652 



 

 

 653 

Figure 3: Distribution of the percent difference (%𝐷𝑖𝑓𝑓) across every flying distance in 654 

the simulation for (1) No correction, (2) Estimated time correction (Estimated TC), and 655 

(3) Estimated flying start distance (Estimated FD) models. Error bars represent the 656 

distribution 𝑚𝑒𝑑𝑖𝑎𝑛 and 95% highest-density continuous interval (95% 𝐻𝐷𝐶𝐼). A grey 657 

area represents the parameter region of practical equivalence (𝑅𝑂𝑃𝐸) (assumed to be 658 

equal to 95% 𝐻𝐷𝐶𝐼 of the %𝐷𝑖𝑓𝑓 using the No correction model and no flying 659 

distance). For the less crowded visualization, flying distance in increments of 0.05 𝑚 is 660 

plotted. 661 

Note. MSS – maximum sprinting speed; TAU – relative acceleration; MAC – maximum acceleration; PMAX – maximal relative 662 

power  663 



 

 

 664 

Figure 4: Percentage of the simulations that lie within the region of practical 665 

equivalence (𝑖𝑛𝑠𝑖𝑑𝑒 𝑅𝑂𝑃𝐸) estimated across every flying distance in the simulation for 666 

(1) No correction, (2) Estimated time correction (Estimated TC), and (3) Estimated 667 

flying start distance (Estimated FD) models. 668 

Note. MSS – maximum sprinting speed; TAU – relative acceleration; MAC – maximum acceleration; PMAX – maximal relative 669 

power  670 



 

 

 671 

Figure 5: Estimated minimal detectable change using 95% confidence level 672 

(%𝑀𝐷𝐶𝑠95) across every flying distance in the simulation for (1) No correction, (2) 673 

Estimated time correction (Estimated TC), and (3) Estimated flying start distance 674 

(Estimated FD) models. The dashed line represents the lowest %𝑀𝐷𝐶𝑠95 estimated 675 

using the No correction model and no flying distance (%𝑀𝐷𝐶𝑠95
𝑙𝑜𝑤𝑒𝑠𝑡). 676 

Note. MSS – maximum sprinting speed; TAU – relative acceleration; MAC – maximum acceleration; PMAX – maximal relative 677 

power 678 
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