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Predicting non-contact hamstring 
injuries by using training load data and 
machine learning models 
 

Mladen Jovanović1 

Introduction 
In running-based team sports (e.g. soccer, handball, basketball, rugby), non-contact hamstring 
injuries remain one of the major reasons players spend time on the sideline. Losing players for 
multiple weeks due to the hamstring (or any other non-contact) injury, can cost clubs not only 
winning games and championship, but can also be a huge financial loss. Estimating likelihood 
of non-contact hamstring injuries and intervening with appropriate actions on those 
predictions is the "holy grail" of the applied sport science.  
 
The aim of the current paper is twofold. First aim is to estimate predictive performance of 
multiple non-contact hamstring injury prediction models, by using a day-to-day collected 
training load data. Second aim is to follow up on the data preparation method outlined by the 
author in the previous paper,1 with predictive modelling on the real data set. Data set used in 
the current paper was given to the author, for the purpose of analysis by a sport organization 
that prefers to remain anonymous. Name of the athletes, days, training load metrics and any 
other data are made anonymous by the author. The author cannot claim validity of the data set 
used in the current paper, due to the fact that author has not been involved in the data 
collection, cleaning and storing of the data. Having said this, the results of the current paper 
should be viewed highly skeptically and with high level of concern. The purpose of the 
current paper is thus educational and speculative, with special emphasis on presenting a 
potential approach in predictive modelling of day-to-day training load data, with the aim of 
predicting non-contact hamstring injuries.  
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Methods 

Athletes 
This study was conducted during the preparatory and competition periods of Season 1 and 
Season 2, in anonymous sports club for N=52 athletes, over 600 days in total (Season 1: N=45 
for 307 days and Season 2: N=45 for 293 days, where N=38 athletes were present in both 
seasons) (see Figure 1).  
 
 

Season 1  Season 2 
N=45 athletes  N=45 athletes 
307 days in duration  293 days in duration 
11 hamstring injuries  14 hamstring injuries 
8 athletes injured  10 athletes injured 

 
Figure 1. Characteristics of Season 1 and Season 2 
 
During this time period, 25 non-contact hamstring injuries occurred (11 in Season 1 and 14 in 
Season 2) for 17 athletes (8 athletes in Season 1 and 10 athletes in Season 2 suffered non-
contact hamstring injuries). (see Table 1) 
 

 Season 1 Season 2 
Athlete 02 2  
Athlete 03  2 
Athlete 04 2  
Athlete 07  1 
Athlete 11  1 
Athlete 15 1  
Athlete 18  1 
Athlete 19 1 1 
Athlete 22  2 
Athlete 28  1 
Athlete 29 1  
Athlete 37  2 
Athlete 40 1  
Athlete 41  2 
Athlete 48 2  
Athlete 49 1  
Athlete 52   1 
Total 11 14 

 
Table 1. Athletes that suffered overuse hamstring injuries during Season 1 and Season 2 
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Design 
This study involved a day-to-day collection of training load and non-contact hamstring injury 
data (collected over Season 1 and Season 2 competition seasons including matches); (b) the 
modeling of training load with injury, with the aim of predicting occurrence of non-contact 
hamstring injury. In order to estimate the predictive performance of multiple classification 
machine learning models, a collected data was split into two partitions: (a) training data set 
and (b) testing data set 2. Training data set was used to train the models, while testing data set 
was used to estimate predictive performance on unseen data. Although I suggested splitting 
the data into training and testing data sets by using seasons 2 (e.g. Season 1 as training data 
set, and Season 2 as testing data set), due to the small number of injury occurrences, the data 
was split by using athletes instead. Data from both seasons for athletes “Athlete 02”, “Athlete 
03”, “Athlete 40”, and “Athlete 52” was used as testing data set. Splitting the data by using 
this method, rather than seasons, has achieved multiple goals: (1) more injury occurrences are 
used to train the models, (2) potentially different loading patterns from two seasons are taken 
into account, and (3) models are evaluated on the unseen athletes, which represent 
ecologically valid way to evaluate the model.   
 

Training Data Set  Testing Data Set 
N=48 athletes  N=4 athletes 
19 hamstring injuries  6 hamstring injuries 
13 athletes injured  4 athletes injured 

 
Figure 2. Characteristics of training and testing data sets 
  

Methodology 

Training load 
Session training load was represented by using three training load metrics. The name and the 
origin of training load metrics remain anonymous. Training load metrics were mostly 
captured for all training sessions, which included skill sessions and matches, resistance 
training sessions, recovery sessions, off-legs conditioning sessions, as well as rehab sessions. 
Due to the data acquisition nature, some training load metrics were not acquired on certain 
type of training sessions. Thus, with reported and used three training load metrics in this 
study, “total” training load was not represented in satisficing manner.  
 
Training load data was represented by using day-to-day instance for every athlete, and in case 
of multiple training sessions per day, training load data was summed together to get the daily 
training load. Training load for non-training days was zero, for all three metrics. In the cases 
of missing data, the data was imputed using MICE procedure 3,4.  
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Injury definition 
For the purposes of this study, an injury was defined as any non-contact, soft-tissue hamstring 
injury sustained by an athlete, during a training session or match, that prevented the player 
from completing the entire training session or match. Other types and locations of injuries 
were collected over duration of this study, but were not taken into analysis and were assumed 
to have no effect on the likelihood of suffering non-contact hamstring injury. Since the author 
was not involved in injury data collection, the validity of the injury data used in the current 
study cannot be claimed.    

Data preparation (Feature engineering) 
Data collected was organized in day-athlete instances (one row of day data for each athlete), 
and the injury occurrence was tagged on a given day as "Injured" versus "Non.Injured" for all 
other days (see Table 2).  
 

Date Player.Name Injury LoadMetric01 LoadMetric02 LoadMetric03 
1 Athlete 02 Non.Injured 278 5867 12 
2 Athlete 02 Non.Injured 0 0 0 
3 Athlete 02 Non.Injured 174 4014 376 
4 Athlete 02 Non.Injured 0 0 0 
5 Athlete 02 Non.Injured 430 6348 1386 
6 Athlete 02 Non.Injured 0 0 0 
7 Athlete 02 Non.Injured 0 0 0 
8 Athlete 02 Non.Injured 675 5136 0 
9 Athlete 02 Non.Injured 879 6717 2203 

10 Athlete 02 Non.Injured 520 0 0 
11 Athlete 02 Non.Injured 914 7399 1768 
12 Athlete 02 Injured 390 0 0 
13 Athlete 02 Non.Injured 986 8197 3131 
14 Athlete 02 Non.Injured 0 0 0 
15 Athlete 02 Non.Injured 455 0 0 
16 Athlete 02 Non.Injured 455 0 0 

. . . . . . 

. . . . . . 

. . . . . . 
Table 2. Data organization into day-athlete instances  

 
In order to be used in predictive model, new features have been engineered. Data preparation 
for injury prediction utilized in this study is outlined in the paper by the author,1 with a few 
additions listed below. Every engineered feature was rounded to the closest two decimals. 
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Acute and Chronic Rolling averages 

For each of the three training load metrics, Acute and Chronic metrics were calculated by 
using the exponential rolling averages. Alpha parameter was calculated by using 2 / (Days + 
1) equation, whereas Acute training load was calculated by using 7 days exponential rolling 
average (alpha=0.25), and Chronic was calculated by using 28 days rolling average 
(alpha=0.069).  

Acute to Chronic Ratio and Difference 

In order to normalize Acute and Chronic training load features, additional ratio (Acute to 
Chronic Workload Ratio (ACWR)) and difference (Acute to Chronic Workload Difference 
(ACWD)) between the two had been calculated and included in the model.  

Rolling Max and Rolling Mean 

Two additional features have been calculated for Acute, Chronic, ACWR and ACWD features 
and they included last 7 days rolling maximum and rolling mean.  
After the above explained feature engineering procedures, each daily training load metric 
(LoadMetric01, LoadMetric02 and LoadMetric03) has got an extra 12 engineered features, 
totaling in 36 features (where the original daily training load metrics were removed).  

Lag Features 

In order to help in modeling effects of training load preceding injury occurrence (i.e. creating 
a memory in the data set), an additional feature engineering has been applied and it involved 
creating the additional three lag variables for each of the previously engineered 36 features. 
This step involved creating 0, 7, 14 and 21 days lag variables, totaling in 144 engineered 
features (see Table 3). In theory, this helps in modelling delayed training load effect on injury 
likelihood (i.e. training load spike that occurred 2 weeks ago, might affect injury likelihood 2 
weeks later). 
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#   LoadMetric01 LoadMetric02 LoadMetric03 

1  LoadMetric01.ACWD.Lag.0 LoadMetric02.ACWD.Lag.0 LoadMetric03.ACWD.Lag.0 

2  LoadMetric01.ACWD.Lag.07 LoadMetric02.ACWD.Lag.07 LoadMetric03.ACWD.Lag.07 

3  LoadMetric01.ACWD.Lag.14 LoadMetric02.ACWD.Lag.14 LoadMetric03.ACWD.Lag.14 

4  LoadMetric01.ACWD.Lag.21 LoadMetric02.ACWD.Lag.21 LoadMetric03.ACWD.Lag.21 

5  LoadMetric01.ACWDrollMax.Lag.0 LoadMetric02.ACWDrollMax.Lag.0 LoadMetric03.ACWDrollMax.Lag.0 

6  LoadMetric01.ACWDrollMax.Lag.07 LoadMetric02.ACWDrollMax.Lag.07 LoadMetric03.ACWDrollMax.Lag.07 

7  LoadMetric01.ACWDrollMax.Lag.14 LoadMetric02.ACWDrollMax.Lag.14 LoadMetric03.ACWDrollMax.Lag.14 

8  LoadMetric01.ACWDrollMax.Lag.21 LoadMetric02.ACWDrollMax.Lag.21 LoadMetric03.ACWDrollMax.Lag.21 

9  LoadMetric01.ACWDrollMean.Lag.0 LoadMetric02.ACWDrollMean.Lag.0 LoadMetric03.ACWDrollMean.Lag.0 

10  LoadMetric01.ACWDrollMean.Lag.07 LoadMetric02.ACWDrollMean.Lag.07 LoadMetric03.ACWDrollMean.Lag.07 

11  LoadMetric01.ACWDrollMean.Lag.14 LoadMetric02.ACWDrollMean.Lag.14 LoadMetric03.ACWDrollMean.Lag.14 

12  LoadMetric01.ACWDrollMean.Lag.21 LoadMetric02.ACWDrollMean.Lag.21 LoadMetric03.ACWDrollMean.Lag.21 

13  LoadMetric01.ACWR.Lag.0 LoadMetric02.ACWR.Lag.0 LoadMetric03.ACWR.Lag.0 

14  LoadMetric01.ACWR.Lag.07 LoadMetric02.ACWR.Lag.07 LoadMetric03.ACWR.Lag.07 

15  LoadMetric01.ACWR.Lag.14 LoadMetric02.ACWR.Lag.14 LoadMetric03.ACWR.Lag.14 

16  LoadMetric01.ACWR.Lag.21 LoadMetric02.ACWR.Lag.21 LoadMetric03.ACWR.Lag.21 

17  LoadMetric01.ACWRrollMax.Lag.0 LoadMetric02.ACWRrollMax.Lag.0 LoadMetric03.ACWRrollMax.Lag.0 

18  LoadMetric01.ACWRrollMax.Lag.07 LoadMetric02.ACWRrollMax.Lag.07 LoadMetric03.ACWRrollMax.Lag.07 

19  LoadMetric01.ACWRrollMax.Lag.14 LoadMetric02.ACWRrollMax.Lag.14 LoadMetric03.ACWRrollMax.Lag.14 

20  LoadMetric01.ACWRrollMax.Lag.21 LoadMetric02.ACWRrollMax.Lag.21 LoadMetric03.ACWRrollMax.Lag.21 

21  LoadMetric01.ACWRrollMean.Lag.0 LoadMetric02.ACWRrollMean.Lag.0 LoadMetric03.ACWRrollMean.Lag.0 

22  LoadMetric01.ACWRrollMean.Lag.07 LoadMetric02.ACWRrollMean.Lag.07 LoadMetric03.ACWRrollMean.Lag.07 

23  LoadMetric01.ACWRrollMean.Lag.14 LoadMetric02.ACWRrollMean.Lag.14 LoadMetric03.ACWRrollMean.Lag.14 

24  LoadMetric01.ACWRrollMean.Lag.21 LoadMetric02.ACWRrollMean.Lag.21 LoadMetric03.ACWRrollMean.Lag.21 

25  LoadMetric01.Acute.Lag.0 LoadMetric02.Acute.Lag.0 LoadMetric03.Acute.Lag.0 

26  LoadMetric01.Acute.Lag.07 LoadMetric02.Acute.Lag.07 LoadMetric03.Acute.Lag.07 

27  LoadMetric01.Acute.Lag.14 LoadMetric02.Acute.Lag.14 LoadMetric03.Acute.Lag.14 

28  LoadMetric01.Acute.Lag.21 LoadMetric02.Acute.Lag.21 LoadMetric03.Acute.Lag.21 

29  LoadMetric01.AcuteRollMax.Lag.0 LoadMetric02.AcuteRollMax.Lag.0 LoadMetric03.AcuteRollMax.Lag.0 

30  LoadMetric01.AcuteRollMax.Lag.07 LoadMetric02.AcuteRollMax.Lag.07 LoadMetric03.AcuteRollMax.Lag.07 

31  LoadMetric01.AcuteRollMax.Lag.14 LoadMetric02.AcuteRollMax.Lag.14 LoadMetric03.AcuteRollMax.Lag.14 

32  LoadMetric01.AcuteRollMax.Lag.21 LoadMetric02.AcuteRollMax.Lag.21 LoadMetric03.AcuteRollMax.Lag.21 

33  LoadMetric01.AcuteRollMean.Lag.0 LoadMetric02.AcuteRollMean.Lag.0 LoadMetric03.AcuteRollMean.Lag.0 

34  LoadMetric01.AcuteRollMean.Lag.07 LoadMetric02.AcuteRollMean.Lag.07 LoadMetric03.AcuteRollMean.Lag.07 

35  LoadMetric01.AcuteRollMean.Lag.14 LoadMetric02.AcuteRollMean.Lag.14 LoadMetric03.AcuteRollMean.Lag.14 

36  LoadMetric01.AcuteRollMean.Lag.21 LoadMetric02.AcuteRollMean.Lag.21 LoadMetric03.AcuteRollMean.Lag.21 

37  LoadMetric01.Chronic.Lag.0 LoadMetric02.Chronic.Lag.0 LoadMetric03.Chronic.Lag.0 

38  LoadMetric01.Chronic.Lag.07 LoadMetric02.Chronic.Lag.07 LoadMetric03.Chronic.Lag.07 

39  LoadMetric01.Chronic.Lag.14 LoadMetric02.Chronic.Lag.14 LoadMetric03.Chronic.Lag.14 

40  LoadMetric01.Chronic.Lag.21 LoadMetric02.Chronic.Lag.21 LoadMetric03.Chronic.Lag.21 

41  LoadMetric01.ChronicRollMax.Lag.0 LoadMetric02.ChronicRollMax.Lag.0 LoadMetric03.ChronicRollMax.Lag.0 

42  LoadMetric01.ChronicRollMax.Lag.07 LoadMetric02.ChronicRollMax.Lag.07 LoadMetric03.ChronicRollMax.Lag.07 

43  LoadMetric01.ChronicRollMax.Lag.14 LoadMetric02.ChronicRollMax.Lag.14 LoadMetric03.ChronicRollMax.Lag.14 
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Table 3. Engineered features from the three training load metrics 

Injury Lead feature 

Non-contact hamstring injury occurrence was tagged only once on the day when it occurred 
(see Table 2, Injury column). To create early warning sign, as well as to increase number of 
injury occurrences in the data set, and help predictive models by creating a potential overlap 
between the preceding training loads (using the above explained Lag features) and injury 
occurrence, the three target features have been created by using 7, 14 and 21 injury lead days 
(see Table 4).  
 

Date Player.Name Injury Injury07 Injury14 Injury21 LoadMetric01 LoadMetric02 LoadMetric03 

1 Athlete 04 Non.Injured Non.Injured Non.Injured Non.Injured 260 0 0 

2 Athlete 04 Non.Injured Non.Injured Non.Injured Non.Injured 142 4003 275 

3 Athlete 04 Non.Injured Non.Injured Non.Injured Injured 1678 13651 1529 

4 Athlete 04 Non.Injured Non.Injured Non.Injured Injured 0 0 0 

5 Athlete 04 Non.Injured Non.Injured Non.Injured Injured 338 1963 118 

6 Athlete 04 Non.Injured Non.Injured Non.Injured Injured 197 4240 640 

7 Athlete 04 Non.Injured Non.Injured Non.Injured Injured 0 0 0 

8 Athlete 04 Non.Injured Non.Injured Non.Injured Injured 0 0 0 

9 Athlete 04 Non.Injured Non.Injured Non.Injured Injured 0 0 0 

10 Athlete 04 Non.Injured Non.Injured Injured Injured 725 9379 1557 

11 Athlete 04 Non.Injured Non.Injured Injured Injured 25 1286 0 

12 Athlete 04 Non.Injured Non.Injured Injured Injured 0 0 0 

13 Athlete 04 Non.Injured Non.Injured Injured Injured 1320 8259 1108 

14 Athlete 04 Non.Injured Non.Injured Injured Injured 260 0 0 

15 Athlete 04 Non.Injured Non.Injured Injured Injured 153 3451 263 

16 Athlete 04 Non.Injured Non.Injured Injured Injured 1628 14864 2025 

17 Athlete 04 Non.Injured Injured Injured Injured 0 0 0 

18 Athlete 04 Non.Injured Injured Injured Injured 38 1286 0 

19 Athlete 04 Non.Injured Injured Injured Injured 389 4015 564 

20 Athlete 04 Non.Injured Injured Injured Injured 0 0 0 

21 Athlete 04 Non.Injured Injured Injured Injured 772 5169 498 

22 Athlete 04 Non.Injured Injured Injured Injured 0 0 0 

23 Athlete 04 Non.Injured Injured Injured Injured 153 3451 263 

24 Athlete 04 Injured Injured Injured Injured 1678 13651 1529 

25 Athlete 04 Non.Injured Non.Injured Non.Injured Non.Injured 0 0 0 

26 Athlete 04 Non.Injured Non.Injured Non.Injured Non.Injured 0 0 0 

27 Athlete 04 Non.Injured Non.Injured Non.Injured Non.Injured 455 0 0 

. . . . . . . . . 

44  LoadMetric01.ChronicRollMax.Lag.21 LoadMetric02.ChronicRollMax.Lag.21 LoadMetric03.ChronicRollMax.Lag.21 

45  LoadMetric01.ChronicRollMean.Lag.0 LoadMetric02.ChronicRollMean.Lag.0 LoadMetric03.ChronicRollMean.Lag.0 

46  LoadMetric01.ChronicRollMean.Lag.07 LoadMetric02.ChronicRollMean.Lag.07 LoadMetric03.ChronicRollMean.Lag.07 

47  LoadMetric01.ChronicRollMean.Lag.14 LoadMetric02.ChronicRollMean.Lag.14 LoadMetric03.ChronicRollMean.Lag.14 

48  LoadMetric01.ChronicRollMean.Lag.21 LoadMetric02.ChronicRollMean.Lag.21 LoadMetric03.ChronicRollMean.Lag.21 
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. . . . . . . . . 

. . . . . . . . . 

Table 4. Injury Lead features for 7, 14 and 21 days  
 
These three features (Injury07, Injury14 and Injury21) represent target variables in the 
predictive models. With the data organized this way, machine learning models estimate the 
likelihood of getting non-contact hamstring injury in 7 or less, 14 or less, and 21 or less days. 
Performance of each machine learning model will be reported for each injury target variable. 

Statistical analysis 
All analyses have been performed in R statistical language 5 by utilizing caret package,6,7 
with the following machine learning models: (a) Principal Component Logistic Regression 
(Logistic Regression), (b) Random Forest 8 (2000 trees and 10 tuning parameters), (c) Elastic-
Net Regularized Generalized Linear Models 9 (GLMNET) (10 tuning parameters), (d) Neural 
Network 10 (Neural NET) (maximal number of iterations 2000 with 10 tuning parameters), (d) 
Support Vector Machine with linear kernel 11 (SVM) (10 tuning parameters). Each machine 
learning model was trained by using training data set using Injury07, Injury14 and Injury21 as 
target variables, and estimated predictive performance on testing data set (see Figure 2). For 
each machine learning model, the best tuning parameter was selected based on a cross-
validated predictive performance by using AUC metric 7 (Area Under Receiver-Operator 
Curve).  

Cross-validation method 
The most valid method to perform cross-validation would be using “leave-one-injured-
athlete-out” (LOIAO) (see Figure 3). LOIAO cross-validation involves leaving one injured 
athlete (who suffered at least one injury in the training data set) and training the model on the 
rest of the data. AUC as a measure of predictive performance is calculated for the left-out 
athlete. The process is repeated for all injured athletes in the training data set, and the final 
model tuning parameter was selected based on the highest averaged cross-validated AUC 
metric.  
 

 
Figure 3. Cross-validation by using "leave-one-injured-athlete-out" (LOIAO) 
 



9 

Unfortunately, LOIAO cross-validation, although ecologically the most valid method to 
evaluate predictive performance for the problem at hand (since we are interested in how 
model predicts on new unseen athletes), was not utilized in the current paper. The main issue 
with LOIAO cross-validation is very small number of injury occurrences (since we are 
predicting on only one athlete) and, thus, unreliable estimation of AUC. For the purposes of 
the current paper, repeated cross-validation with 3 folds and 10 repeats was utilized.  

SMOTE Sampling 
A data set is imbalanced if the classification categories are not approximately equally 
represented. This was the case in both training and testing data sets, since the number of 
"Injured" instances is less than 3% of the total number of instances in both training and testing 
data sets, for Injury07, Injury14 and Injury21 target variables.  
 
SMOTE sampling technique uses over-sampling of the misrepresented class (in this case 
"Injured"), and under-sampling of the overrepresented class (in this case "Non.Injured"), to 
achieve more balanced samples used in training machine learning models 6,7,12. SMOTE was 
applied in each cross-validation iteration. 

Area Under Curve (AUC) 
Predicting "Injured" versus "Non.Injured" instances, represent classification problem in 
machine learning. For the purposes of this study, AUC metric was used to estimate predictive 
performance of the machine learning models 7,13. AUC is expressed in arbitrary units, where 1 
is perfect prediction and 0.5 is equal to random guess.  

Results 
Figure 4 depicts training, cross-validated and testing data set predictive performance of all 
five machine learning models for Injury07, Injury14, and Injury21, as target variables by us-
ing the AUC metric. Horizontal error bars represent 95% bootstrap confidence intervals (us-
ing 2000 resamples)13. 
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Figure 4. Prediction performance of five machine learning models by using the AUC metric 
(arbitrary units)  

From all of the models, Random Forest had the perfect prediction on training data set for 
all three target variables (Injury07, Injury14, and Injury 21), but it suffered from overfit 7, as 
can be seen through the poor performance on testing data set. Overall, all models showed 
poor predictive performance on the testing data set (less than 0.65 AUC, where 0.5 AUC is a 
random guess, and 1 AUC is perfect prediction). All models, ROC, and predictions can be 
found in Supplementary Material. 
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Discussion 
Model performance on training data set can be optimistic and suffer from overfit, or, in other 
words, model can confuse noise for the signal 7. To control for making overfit errors, cross-
validation and hold-out (testing) data set are utilized. Figure 5 depicts Random Forest 
predictions for Injury14 target variable on training data set.  
 

 
Figure 5. Training data set Random Forest model predictions by using Injury14 as a target 
variable. Lines represent likelihood of suffering from non-contact hamstring injury in 14 or 
less days. Red bars represent the actual injury occurrence (with 14 days injury lead). 

 
From simple visual inspection of the graph, it can be seen that prediction is perfect, because 
the model predicts very high likelihood of injuries in the red bars (red bars represent the 
actual injury occurrence, with 14 days injury lead). Figure 6 depicts ROC curve for the 
discussed training data set Random Forest model performance for Injury14 target variable. 
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Figure 6. ROC for training data set Random Forest model for Injury14 target variable. AUC 
is expressed in arbitrary units and 95% bootstrap confidence intervals are reported in the 
brackets.  

 
From Figure 5 and Figure 6, one can conclude that non-contact hamstring injuries can be 

perfectly predicted. But when this very same model is evaluated on testing data set (unseen by 
the model), the predictions (Figure 7) and ROC curve (Figure 8) look much different, actually 
worse than a random guess (0.47 AUC).  

 

 
Figure 7. Testing data set Random Forest model predictions by using Injury14 as a target 
variable. Lines represent likelihood of suffering from non-contact hamstring injury in 14 or 
less days. Red bars represent the actual injury occurrence (with 14 days injury lead). 
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Figure 8. ROC for testing data set Random Forest model for Injury14 target variable. AUC is 
expressed in arbitrary units and 95% bootstrap confidence intervals are reported in the 
brackets.  

Practical applications 
In the current study, by assuming validity of the data analyzed, it can be concluded that the 
non-contact hamstring injuries could not be predicted by using training load data with features 
engineered, as described previously. To paraphrase Nassim Taleb, author of Black Swan 14 
and Antifragile 15 books: "It is far easier to figure out if something is fragile, then to predict 
the occurrence of an event that may harm it". Practitioners should hence spend more time and 
effort in building more robust athletes, than trying to predict injury occurrences2. 

Limitations 
Representing complex reality with simple models. always include many assumptions and 
most likely misses out numerous factors 2. In the current study, there have been many as-
sumptions and limitations involved in the data representations and modeling: 

- Only three training load variables are used, whereas many more could be utilized.  
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- Assumptions that previous injuries (hamstring or other related ones) don’t affect future 

non-contact hamstring injuries. 

- Assumptions that athlete’s characteristics (age, experience, weight, previous injury), 

performance testing (i.e. strength levels, aerobic endurance, maximal speed), as well as 

medical screening (stability and mobility issues and so forth), don't affect training load 

effects on injury likelihood. 

- Assumptions that athlete’s readiness, wellness, nutritional and emotional status don't 

affect training load effects on injury likelihood. 

- Assumption that match outcome doesn't affect emotional response by the athlete, hence, 

has no effect on training load effects on injury likelihood. 

- Assumptions that external conditions, like shoes, surface, weather, time of the day and 

so forth, don't affect training load effects on injury likelihood. 

- Data collected only for one sports club, over two competitive seasons. 

Enlisting all limitations and assumptions (known and unknown) can probably be a paper 
itself. Collecting more data for a longer period of time (i.e. the whole league for 5-10 years), 
might bring some insightful information and it could be a fruitful strategy to employ. In 
machine learning, there is a heuristic “More data beats better algorithms”16. Even with such 
an enterprise, numerous modeling assumptions will be present, and practitioners should look 
at model predictions as only one source of information or evidence to direct their practices. 
Other sources of actionable insights should be simple rules of thumb or heuristics (such as 
those proposed by the author 2, coaching intuition, and using multi-model approach 17. Even if 
injury prediction models show more promising predictive performance in the future, they 
don't sort out intervention and causal problems 2: 

- How will intervening on predictions change the outcome and model parameters (author 

has named this "Minority Report Paradox", after a famous movie with Tom Cruise), 

since interventions rely on model parameters "stationarity" assumptions. This brings 

another issues, on how intervention should be represented in the model itself and how 

often the model needs to be rebuilt 
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-  How do we go about reporting injury likelihood to athletes themselves? Should they be 

aware of the injury likelihoods and how is that going to affect the injury likelihood itself 

(e.g. how will telling athlete that he or she has high likelihood of non-contact hamstring 

injury in the next 21 days or less, impact his/her performance and emotional state, and 

how will that affect the actual likelihood itself). This is another example of "Minority 

Report Paradox".  

Predicting future events is hard, but what is even harder, is acting on these predictions. One 
potential solution is to look at model predictions as only one source of insights (e.g. "what 
training load history has to tell us?") that needs to be put into the correct context (together 
with intuition and heuristics as other sources of actionable insights), acted upon it with a grain 
of salt, and frequently re-built with the latest data and intervention information. Together with 
Nassim Taleb quote, this current paper is best finished with the quote by Abraham Lincoln: 
"The best way to predict the future is to create it".  

Supplementary Materials 
Accompanying R code, analysis graphs (ROC curves and predictions), as well as raw and 
prepared training load data are available on GitHub repository: 
 
https://github.com/mladenjovanovic/predicting-hamstring-injuries 
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Citation and license 
Current paper and accompanying code are under MIT license 
 
The MIT License (MIT) 
  
Copyright (c) 2018 Mladen Jovanović 
 
Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the "Software"), to deal in the Software without 
restriction, including without limitation the rights to use, copy, modify, merge, publish, dis-
tribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the 
Software is furnished to do so, subject to the following conditions: 
     
The above copyright notice and this permission notice shall be included in 
all copies or substantial portions of the Software. 
  
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES 
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT.  
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE 
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION 
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CON-
NECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 
THE SOFTWARE. 

 
For citations please use the following: 
 
Jovanovic, M. (2018). Predicting non-contact hamstring injuries by using training load data 
and machine learning methods. URL: www.complementarytraining.net/predicting-hamstring-
injuries 
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