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Introduction

This is a re-analysis of the data from the (2) paper. The aim if to provide different analysis, but also
educational. I will use functions of the bmbstats package (5), as well as using nlme package for mixed-effects
modeling. For more thorough coverage of the bmbstats package, please check the book (7).

To install these packages, please run this code:
install.packages(c("devtools", "tidyverse", "knitr", "lme4"), dependencies = TRUE)

devtools::install_github("mladenjovanovic/bmbstats")

The design of the study is two-fold (see figure below): (1) concurrent validity between 1000m time trial
(1000TT) and YoYo intermittent field test level 1 (YoYOIR1) tests, and (2) repeatability of the 1000TT.
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Fig. 1. Schematic of experimental timeline for assessing concurrent validity of a

1000m time trial (L1000TT) compared with the Yo-Yo Intermittent Recovery Test 1
(YOYO-IR1) and between-session reliability of the 1000TT.

Dataset was provided by the author and can be found in the table below.

require (bmbstats)
require(tidyverse)
require(knitr)



# Load data

tt_data <- read_csv("1000TT-yoyo.csv")

kable(tt_data)

athlete setup test value
Player 1 Validity YOYO-IR1 2400
Player 2 Validity YOYO-IR1 2560
Player 3 Validity YOYO-IR1 2080
Player 4  Validity YOYO-IR1 2440
Player 5 Validity YOYO-IR1 2040
Player 6  Validity YOYO-IR1 2120
Player 7 Validity YOYO-IR1 2200
Player 8  Validity YOYO-IR1 2280
Player 9  Validity YOYO-IR1 2400
Player 10  Validity YOYO-IR1 2120
Player 11  Validity YOYO-IR1 1800
Player 12 Validity YOYO-IR1 1520
Player 13 Validity YOYO-IR1 1840
Player 1 Validity 1000TT 208
Player 2 Validity 1000TT 186
Player 3  Validity 1000TT 213
Player 4  Validity 1000TT 196
Player 5  Validity 1000TT 206
Player 6  Validity 1000TT 209
Player 7 Validity 1000TT 217
Player 8  Validity 1000TT 212
Player 9  Validity 1000TT 205
Player 10  Validity 1000TT 209
Player 11  Validity 1000TT 213
Player 12 Validity 1000TT 230
Player 13 Validity 1000TT 222
Player 1 Repeatability  1000TT.Trial 1 210
Player 2 Repeatability 1000TT.Trial 1 200
Player 3  Repeatability 1000TT.Trial 1 209
Player 4  Repeatability 1000TT.Trial 1 205
Player 5  Repeatability 1000TT.Trial 1 212
Player 6  Repeatability 1000TT.Trial 1 212
Player 7 Repeatability 1000TT.Trial 1 215
Player 8  Repeatability 1000TT.Trial 1 211
Player 9  Repeatability 1000TT.Trial 1 215
Player 10 Repeatability 1000TT.Trial 1 216
Player 1 Repeatability  1000TT.Trial 2 217
Player 2 Repeatability 1000TT.Trial 2 196
Player 3  Repeatability 1000TT.Trial 2 210
Player 4  Repeatability 1000TT.Trial 2 206
Player 5  Repeatability 1000TT.Trial 2 209
Player 6  Repeatability 1000TT.Trial 2 209
Player 7 Repeatability 1000TT.Trial 2 213
Player 8  Repeatability 1000TT.Trial 2 212
Player 9  Repeatability 1000TT.Trial 2 222
Player 10 Repeatability 1000TT.Trial 2 213




Predictive validity

Concurrent validity estimates the agreement between 1000TT and YoYoIR1. Rather than estimating this
agreement using Pearson’s r or R2, I would be interested in predictive validity. Predictive validity checks if
we can predict a variable of interest (in this case YoYoIR1) within the practical limits. Practical limits, or
smallest-effect size of interest (SESOI) in this case can be defined as measurement error in the variable of
interest, or something that coach can find practically meaningful. Measurement error can be estimated using
reliability study, or in other words random error of the test of interest (i.e., standard error of measurement;
SEM, or typical error; TE). Practically meaningful SESOI can also be defined by coach, using for example
difference between high and low athlete, or anything else practically meaningful. In the case these are missing,
we can also use Cohen’s trivial range of 0.2 x SD.

Here, I have defined YoYoIR1 SESOI as an average of SEMs and TEs from reliability studies (3,4) multiplied
by £1.96 to get 95% limits of agreement.

YoYoIR1_SESOI <- 1.96 * mean(
c(154, 171, 123, 137, 101, 107, 149, 77, 74, 147, 126, 172)
)

The selected YoYoIR1 SESOI is equal to 251m. This implies that without any real change in YoYolR1
score, the test result will vary 95% within +£251m. If our predicted YoYoIR1 scores are within this level of
agreement, our predictions are practically good and useful.

As explained previously, another way would be to use 0.2 x SD, which would be equal to 59m. It is up to
us to define SESOI apriori to what we deem important. Here I have utilized random measurement error
multiplied by 1.96.

YoYoIR1 is expressed in meters covered (i.e., distance), while 1000TT is expressed in seconds, but we can
also express it as average velocity (MAS - maximum aerobic speed; in km/h). I have also utilized adjusted
mean velocity by deducting 0.7s per each turn in 1000mTT (9 changes of direction; COD) (6).

Here is the dataset we are going to use for predictive validity analysis.

tt_validity <- tt_data %>%

filter(setup == "Validity") %>%
pivot_wider(id_cols = 1:2, names_from = "test", values_from = "value") %>%
mutate(

“1000TT.MAS™ = 3.6 * 1000 / ~1000TT",
*1000TT.MAS adj" = 3.6 * 1000 / ( 1000TT" - 9 * 0.7)
)

kable(tt_validity)

athlete setup YOYO-IR1 1000TT 1000TT.MAS 1000TT.MAS adj

Player 1 Validity 2400 208 17.3 17.8
Player 2 Validity 2560 186 194 20.0
Player 3 Validity 2080 213 16.9 17.4
Player 4  Validity 2440 196 18.4 19.0
Player 5  Validity 2040 206 17.5 18.0
Player 6  Validity 2120 209 17.2 17.8
Player 7 Validity 2200 217 16.6 17.1
Player 8  Validity 2280 212 17.0 17.5
Player 9  Validity 2400 205 17.6 18.1
Player 10  Validity 2120 209 17.2 17.8



athlete setup YOYO-IR1 1000TT 1000TT.MAS 1000TT.MAS adj

Player 11  Validity 1800 213 16.9 17.4
Player 12 Validity 1520 230 15.7 16.1
Player 13  Validity 1840 222 16.2 16.7

Here is scatter plot of YoYolR and 1000mTT with residuals. Gray band indicates our selected SESOI. Dashed
lines indicate SDC, or smallest detectable change, using 95% level of confidence. If residuals fall within SESOI
band, then our predictions are practically useful.

plot_pair_1m(
predictor = tt_validity$ 1000TT",
predictor_label = "1000TT (sec)",
outcome = tt_validity$ YOYO-IR1",
outcome_label = "YOYO-IR1 (m)",
SESOI_lower = -YoYoIR1_SESOI,
SESOI_upper = YoYoIR1_SESOI
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Rather than using 1000TT time, we can use adjusted MAS:

plot_pair_1m(
predictor = tt_validity$ 1000TT.MAS adj’,
predictor_label = "MAS adj (km/h)",
outcome = tt_validity$ YOYO-IR1",
outcome_label = "YOYO-IR1 (m)",
SESOI_lower = -YoYoIR1_SESOI,
SESOI_upper = YoYoIR1_SESOI
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bmbstats package comes with validity_analysis function that provides already built in bootstrapped

validity estimators (more more info see (7)).

Here I will utilize adjusted MAS to predict YoYoIR1 test distance:

pred_validity <- validity_analysis(
data = tt_validity,

"YOYO-IR1",

"1000TT.MAS adj",

criterion =
practical =
SESOI_lower
SESOI_upper

-YoYoIR1_SESOI,
YoYoIR1_SESOI,

control = model_control(

boot_type

boot_samples
seed = 1667

)

#> [1] "All values of t are equal to
#> [1] "All wvalues of t are equal to

"perc" R
= 2000,

plot(pred_validity)

251.206666666667 \n Cannot calculate confidence intervals”
502.413333333333 \n Cannot calculate confidence intervals”
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Estimators and their 95% bootstrap confidence intervals are in the table below:

kable(pred_validity$estimators)

estimator value lower upper
SESOI lower -251.207 -251.207 -251.207
SESOI upper 251.207 NA NA
SESOI range 502.413 NA NA
Intercept -2206.465 -4683.758 -331.774
Slope 244.809 143.675  385.682
RSE 175.225 105.260  202.094
Pearson’s r 0.820 0.537 0.936
R Squared 0.672 0.289 0.876
SESOI to RSE 2.867 2.486 4.773
PPER 0.823 0.762 0.966
SDC 381.783 229.342  440.324

PPER estimator, or proportion of practically equivalent residuals, estimates proportion of residuals within the
SESOI band. This is done either by brute force by using counting, or assuming normal distribution of the
residuals and using RSE to estimate proportion.

SDC estimator represents smallest detectable change we can detect in YoYoIR1 with 95% confidence. This is
calculated using RSE and ¢ distribution critical value (over 1.96 for small samples). If SDC is over something
we deem practically useful (i.e. by using SESOI, or checking SESOI to RSE estimator), then our prediction
model is not that great (practically).

Conclusion? If we use SESOI to be 1.96 x T E, or 251m, then our prediction is withing practically acceptable
limits (see PPER). On the other hand, if we use 0.2 x SD, or 59m, we can get different answer. Here is the
result of that approach:



pred_validity <- validity_analysis(

data =
criterion =
practical
control =
boot_type =
boot_samples =
seed = 1667

tt_validity,
"YOYO-IR1"

"perc" ,
2000,

)
)

plot(pred_validity)

>

"1000TT.MAS adj",
model_control (
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validity_analysis function estimates SESOI using 0.2 x SD of the criterion within the bootstrap loop.
That is why we have bootstrap sample for the SESOI (since it is estimated from the data, rather than
provided). Estimators and their 95% bootstrap confidence intervals are in the table below:

kable(pred_validity$estimators)

estimator value lower upper
SESOI lower -58.571 -76.374  -33.568
SESOI upper 58.571 33.568 76.374
SESOI range 117.142 67.137  152.747
Intercept -2206.465 -4683.758 -331.774
Slope 244.809 143.675  385.682
RSE 175.225 105.260  202.094
Pearson’s r 0.820 0.537 0.936
R Squared 0.672 0.289 0.876



estimator value lower upper

SESOI to RSE 0.669 0.454 1.090
PPER 0.256 0.176 0.404
SDC 381.783 229.342  440.324

Using this lower SESOI, brings us to different conclusion - that 1000TT is not predicting YoYoIR1 with
practical agreement.

We can also evaluate this prediction using unseen data with cross-validation (CV) using cv_model function:

pred_model <- cv_model(
"YOYO-IR1® ~ “1000TT.MAS adj",
tt_validity,
control = model_control(
cv_repeats = 10,
cv_folds = 3
)
)

kable(pred_model$cross_validation$performance$summary$overall)

metric training training.pooled testing.pooled mean SD min max
MBE 0.000 0.000 13.214 9.757 100.648 -199.308 177.227
MAE 131.881 129.499 163.029  161.951  41.530 80.898  247.702
RMSE 161.184 154.234 197.817  193.905  35.401  120.830 255.991
PPER 0.267 0.284 0.223 0.192 0.065 0.107 0.345
SESOI to RMSE 0.727 0.731 0.570 0.635 0.202 0.333 1.140
R-squared 0.672 0.700 0.508 0.504 0.241 -0.048 0.852
MinErr -237.049 -278.159 -313.915 -214.858  64.797 -313.915 3.922
MaxFErr 257.256 303.004 393.669  224.115 132.135  -55.287 393.669
MaxAbsErr 257.256 303.004 393.669  288.129  43.868 170.560 393.669

SESOI is again estimated within the CV loop using 0.2 x SD of the YoYoIR1. As can be seen in the table,
PPER estimated using CV is even worse (as expected). What if we use polynomial fit?

But what if we flip the task? Can Yo-YoIR1 predict 1000TT? SESOI for MAS is selected to be 0.5km /h,
since that is usually the threshold utilized when grouping athletes with similar MAS scores for high-intensity
interval conditioning (HIIT).

Here is the plot:

plot_pair_1m(
predictor = tt_validity$ YOYO-IR1",
predictor_label = "YOYO-IR1 (m)",
outcome = tt_validity$ 1000TT.MAS adj’,
outcome_label = "MAS adj (km/h)",
SESOI_lower = -0.5,
SESOI_upper = 0.5
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And the bootstrapped estimators:

pred_validity <- validity_analysis(

)

#> [1] "All values of t are equal to
#> [1] "All values of t are equal to

data = tt_validity,
practical = "YOYO-IR1",
criterion = "1000TT.MAS adj",
SESOI _lower = -0.5,
SESOI_upper = 0.5,
control = model_control(
boot_type = "perc",
boot_samples = 2000,
seed = 1667

plot(pred_validity)

0.5 \n Cannot calculate confidence intervals”
1 \n Cannot calculate confidence intervals"
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And the table:

kable(pred_validity$estimators)

estimator value lower upper

SESOI lower -0.500 -0.500 -0.500
SESOI upper 0.500 NA NA
SESOI range 1.000 NA NA

Intercept 11.880 8.955 15.077
Slope 0.003 0.001  0.004
RSE 0.587 0.307  0.718
Pearson’s r 0.820 0.537  0.936
R Squared 0.672 0.289  0.876
SESOI to RSE  1.705 1.394  3.256
PPER 0.589  0.501  0.870
SDC 1.278 0.669  1.564

You can not the Pearson’s r being the same between two analysis, but PPER being different due to different
SESOI utilized. In this case, using YoYoIR1 to predict 1000TT is a bit better than vice-versa. Let’s see the
prediction on unseen (i.e., cross-validated data):

pred_model <- cv_model(
"1000TT.MAS adj"~ ~ “YOYO-IR1",
tt_validity,
SESOI_lower -0.5,
SESOI_upper = 0.5,
control = model_control(
cv_repeats = 10,
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cv_folds = 3
)
)

kable(pred_model$cross_validation$performance$summary$overall)

metric training training.pooled testing.pooled mean SD min  max
MBE 0.000 0.000 -0.034 -0.027 0.344 -0.573 0.604
MAE 0.437 0.416 0.573 0.576 0.160 0.288 1.039
RMSE 0.540 0.509 0.699 0.681 0.180 0.354 1.144
PPER 0.609 0.672 0.523  0.450 0.110 0.270 0.698
SESOI to RMSE 1.853 1.963 1430 1.572 0431 0874 2.822
R-squared 0.672 0.708 0.451 -0.193 1.741 -4.921 0.750
MinErr -1.128 -1.164 -1.843 -0.818 0.625 -1.843 0.345
MaxFrr 0.831 1.030 1.077  0.693 0.205 0.250 1.077
MaxAbsErr 1.128 1.164 1.843 1.089 0.342 0.598 1.843
SIMEX

The previous analyses assume that both x-variable and y-variable are true values. Unfortunately, they both
have measurement error involved. If we know the measurement errors for the YoYolR1 and 1000TT, we can
simulate the effect of adding extra measurement error, and the extrapolating to the scenario when there is no
measurement error. This procedure is called SIMEX (7-12).

For YoYoIR1 we have already used measurement error as SESOI (multiplied by 1.96), which is equal to 128m,
but for 1000TT (MAS adj) we will use 0.3km/h (see the section on repeatability). Let’s see how adding extra
noise affects our validity estimators. To do this, for each extra noise (i.e. from 1; current level, to 3), we will
make 100 simulations.

simex_data <- expand_grid(
simulation = seq(1, 100),
noise_factor = seq(1, 3, length.out = 10),
“YoYoIR1 ME™ = YoYoIR1_SESOI / 1.96,
“1000TT.MAS adj ME™ = 0.3,
tt_validity

)

est_wrapper <- function(data) {
# Add nmoise

data <- data %>%
mutate (
"YOYO-IR1®™ = “YOYO-IR1™ +
rnorm(n(), O, “YoYoIR1 ME™ * (noise_factor-1)),

*1000TT.MAS adj" = ~1000TT.MAS adj" +
rnorm(n(), O, ~1000TT.MAS adj ME" * (noise_factor-1))
)

pred_validity <- validity_estimators(
data = data,
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criterion = "YOYO-IR1",

practical = "1000TT.MAS adj",
SESOI_lower = -YoYoIR1_SESOT,
SESOI_upper = YoYoIR1_SESOI)

as.data.frame(t(pred_validity))
}

simex_res <- simex_data %>%
group_by(simulation, noise_factor) %>
do(est_wrapper(.))

# Create SDC model
ml <- 1m( SDC” ~I(noise_factor~2), simex_res)

# Convert to long
simex_res_long <- simex_res %>%
pivot_longer(cols = -(1:2), names_to = "estimator") %>%

mutate(estimator = factor(estimator, levels = names(simex_res) [-(1:2)]))

# Plot
ggplot(
simex_res_long,
aes(x = noise_factor, group = simulation, y = value)) +
theme_minimal() +
geom_line(alpha = 0.1) +
geom_smooth (
aes(group = 1),
method = "1lm",
formula = y ~ I(x°2),
se = FALSE,
color = "red",
fullrange = TRUE
) +
facet_wrap(~estimator, scales = "free_y") +
ylab(NULL) +
xlab("Error multiplier") +
x1im(c(0, 3))
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If we extrapolate to the situation when there is no measurement errors in both YoYoIR1 and 1000TT MAS
adj, then SDC will be equal to 316m. Not much better, but at least we have showed the effects of measurement
erTors.

Repeatability

The second aim of the (2) study is to estimate 1000TT repeatability. Here is the dataset used. Please note
that I have included 1000TT from the concurrent validity as well:

tt_repeatability <- tt_data %>%
filter(setup == "Repeatability") %>%
pivot_wider(id_cols = 1:2, names_from = "test", values_from = "value") %>%
# Add TT from validity
full_join(
select(tt_validity, athlete, ~1000TT ),
by = "athlete") %>%
rename (" 1000TT.Trial O = ~1000TT")

kable(tt_repeatability)

athlete setup 1000TT.Trial 1  1000TT.Trial 2 1000TT.Trial O
Player 1 Repeatability 210 217 208
Player 2 Repeatability 200 196 186
Player 3  Repeatability 209 210 213
Player 4  Repeatability 205 206 196
Player 5  Repeatability 212 209 206
Player 6  Repeatability 212 209 209
Player 7 Repeatability 215 213 217
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athlete setup 1000TT.Trial 1  1000TT.Trial 2 1000TT.Trial O

Player 8  Repeatability 211 212 212
Player 9  Repeatability 215 222 205
Player 10 Repeatability 216 213 209
Player 11 NA NA NA 213
Player 12 NA NA NA 230
Player 13 NA NA NA 222

The following spaghetti plot depicts all three 1000TT trials (one from concurrent validity, and two from
repeatability):

tt_repeatability_long <- pivot_longer/(
tt_repeatability,
cols = -(1:2),
names_to = "Trial"
Y %>%
mutate (
Trial = factor(Trial)

)

plot_spaghetti(
data = tt_repeatability_long,
id = "athlete",

observations = "Trial",
observations_label = NULL,
value = "value",
value_label = "1000m TT"
)
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Similar to concurent validity, we can use mean and adjusted mean velocity from the 1000TT rather than time:

tt_repeatability <- tt_repeatability %>’
mutate (

“1000TT.Trial 1.MAS® = 3.6 * 1000 / 1000TT.Trial 17,
“1000TT.Trial 1.MAS adj™ = 3.6 * 1000 / (" 1000TT.Trial 1~ - 9 * 0.7),
“1000TT.Trial 2.MAS™ = 3.6 * 1000 / 1000TT.Trial 2,
“1000TT.Trial 2.MAS adj” = 3.6 * 1000 / ("1000TT.Trial 2° - 9 * 0.7),
“1000TT.Trial 0.MAS™ = 3.6 * 1000 / 1000TT.Trial O,
“1000TT.Trial 0.MAS adj™ = 3.6 * 1000 / (T 1000TT.Trial 0~ - 9 * 0.7)

To estimate repeatability, only last two trial will be used. Here is the scatter plot using ordinary-least
products regression (7). I am using £0.5 km/h as SESOI as well.

plot_pair_OLP(
predictor = tt_repeatability$ 1000TT.Trial 2.MAS adj”,
predictor_label = "Trial 2 MAS adj (km/h)",
outcome = tt_repeatability$ 1000TT.Trial 1.MAS adj’,
outcome_label = "Trial 1 MAS adj (km/h)",
SESOI_lower = -0.5,
SESOI_upper = 0.5,
na.rm = TRUE

)
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Using reliability_analysis we can get reliability (in this case repeatability) estimators:

repeatability <- reliability_analysis(
na.omit (tt_repeatability),
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triall "1000TT.Trial 1.MAS adj",
trial2 = "1000TT.Trial 2.MAS adj",
SESOI_lower = -0.5,
SESOI_upper = 0.5,
control = model_control(
boot_type = "perc",
boot_samples = 2000,
seed = 1667
)
)
#> [1] "All values of t are equal to 0.5 \n Cannot calculate confidence intervals
#> [1] "All values of t are equal to 1 \n Cannot calculate confidence intervals”

n

plot(repeatability)
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And the table:

kable(repeatability$estimators)

estimator value lower upper

SESOI lower -0.500 -0.500 -0.500
SESOI upper 0.500 NA NA
SESOI range 1.000 NA NA

Intercept 4.951 -3.679  9.948
Slope 0.720 0.434 1.209
RSE 0.268 0.137 0.330
Pearson’s r 0.832 0.181  0.959
R Squared 0.691 0.046 0.920
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estimator value lower upper

SESOI to RSE  3.730 3.028 7.301

PPER 0.905 0.836 0.995
TE 0.190 0.097 0.234
SDC 0.607  0.310 0.747

Here we have TE estimated, as well as SDC, which is roughly equal to TE x v/2 x 1.96. That is the smallest
change in the 1000TT MAS that we have 95% confidence in that is real, and not biological and measurement
fluke. As can be seen, that is pretty close to our SESOI of 0.5km/h. This is also indicated with excellent
PPER estimator.

But what if we take into account first trial, done in the construct validity part of this study?

Mixed-effects model
Package 1me4 (1) is utilized to fit linear mixed models.

require (1lme4)
require(stringr)

# Convert to adj MAS
tt_repeatability_long <- tt_repeatability_long %>%
mutate(
Trial = factor(Trial),
trial = as.numeric(str_sub(Trial, -1)),
value = 3.6 * 1000 / (value - 9 * 0.7)

# Using trials as numeric

mml <- Ime4: :1lmer(
value ~ trial + (1 + trial | athlete),
data = tt_repeatability_long

summary (mm1)

#> Linear mized model fit by REML ['lmerMod']

#> Formula: value ~ trial + (1 + trial | athlete)
#> Data: tit_repeatability_long

#>

#> REML criterion at convergence: 56.9

#>

#> Scaled residuals:

#> Min 1Q Median 30Q Mazx

#> -1.537 -0.616 0.201 0.464 1.432

#>

#> Random effects:

#> Groups  Name Variance Std.Dev. Corr
#> athlete (Intercept) 0.7229 0.850

#> trial 0.0565 0.238 -0.88
#> Restdual 0.1012 0.318

#> Number of obs: 33, groups: athlete, 13

#>
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#> Fized effects:

#> Estimate Std. Error t walue
#> (Intercept) 17.7009 0.2498  70.87
#> trial -0.1304 0.0961 -1.36
#>

#> Correlation of Fized Effects:

#> (Intr)

#> trial -0.736

# Using trials as ordinal

mm2 <- 1lme4: :1lmer(
value ~ Trial + (1 | athlete),
data = tt_repeatability_long

summary (mm2)

#> Linear mized model fit by REML ['lmerMod']
#> Formula: value ~ Trial + (1 [ athlete)
#> Data: tt_repeatability_long

#>

#> REML criterion at convergence: 60.1

#>

#> Scaled residuals:

#> Min 1 Median 3@ Mazx
#> -1.5034 -0.4653 0.0856 0.4724 1.9798
#>

#> Random effects:

#> Groups  Name Vartance Std.Dev.
#> athlete (Intercept) 0.540 0.735
#> Restdual 0.135 0.367

#> Number of obs: 33, groups: athlete, 13
#>
#> Fized effects:

#> Estimate Std. Error t wvalue
#> (Intercept) 17.748 0.228  77.94
#> Triall000TT.Trial 1 =0, E>E 0.162 -2.18
#> Triall000TT.Trial 2 -0.361 0.162 -2.23
#>

#> Correlation of Fized Effects:

#> (Intr) T10001

#> Tr1000TT.T1 -0.280
#> Tr1000TT.T2 -0.280 0.488

Plot

tt_repeatability_mml <- tt_repeatability_long 7%>%
mutate (
pred = predict(mml, tt_repeatability_long),
resid = pred - value

)

tt_repeatability_mm2 <- tt_repeatability_long %>%
mutate (
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pred = predict(mm2, tt_repeatability_long),
resid = pred - value

)

tt_repeatability_pred <- rbind(
data.frame(tt_repeatability_mml, model = "numeric"),
data.frame(tt_repeatability_mm2, model = "ordinal")

)

ggplot(

tt_repeatability_pred,
aes(x = trial, y = value)
) +
theme_bw() +
geom_point () +
geom_line(aes(y = pred, color = model, group = model)) +
facet_wrap(~athlete) +
scale_x_continuous(
breaks = c(0, 1, 2),
labels = c("Trial 0", "Trial 1", "Trial 2")) +
xlab(NULL) +
ylab("adj MAS (km/h)") +
theme (
legend.position = "top",
legend.title = element_blank()
)
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Bootstrapping all methods to get typical error
Remove the three individuals with NAs.
boot_data <- na.omit(tt_repeatability)

te_estimators <- function(data, SESOI_lower, SESOI_upper, na.rm, init_boot) {
te_diff <- sd(data$ 1000TT.Trial 2.MAS adj - data$ 1000TT.Trial 1.MAS adj ) / sqrt(2)

te_1lm <- summary(
Im( 1000TT.Trial 2.MAS adj~ ~ ~1000TT.Trial 1.MAS adj, data)
)$sigma / sqrt(2)

te_olp <- OLP_regression(

predictor = data$ 1000TT.Trial 1.MAS adj’,
outcome = data$ 1000TT.Trial 2.MAS adj"
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Y$rse / sqrt(2)

data_long <- pivot_longer(
select(
data,
1:2,
“1000TT.Trial O0.MAS adj”,
“1000TT.Trial 1.MAS adj’,
“1000TT.Trial 2.MAS adj’),
cols = -(1:2),
names_to = "Trial")

data_long <- data_long %>%

mutate(

Trial = factor(Trial),

trial = as.numeric(str_sub(Trial, -9, -9))
)

mml <- 1lme4: :lmer(
value ~ trial + (1 + trial | athlete),
data = data_long

mm2 <- 1lme4: :lmer(
value ~ Trial + (1 | athlete),
data = data_long

)
c(
"diff TE" = te_diff,
"Im TE" = te_Ilm,
"olp TE" = te_olp,
"MM numeric" = summary(mml)$sigma,
"MM nominal" = summary(mm2)$sigma
)
}

boot_te <- bmbstats(

data = boot_data,
estimator_function = te_estimators,
control = model_control(

iter = FALSE,

boot_type = "perc",

boot_samples = 2000,

seed = 1667

plot (boot_te)

kable(boot_te$estimators)
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estimator value lower upper

diff TE 0.242 0.118 0.298
Im TE 0.252  0.095 0.298
olp TE 0.263 0.101  0.337

MM numeric 0.318 0.126  0.352
MM nominal 0.361 0.209 0.385

diff TE Im TE olp TE

*— —— : , —8

0.1 0.2 0.3 0.1 0.2 0.3 0.0 0.1 0.2 0.3 0.4

MM numeric MM nominal

0.1 0.2 0.3 0.4 0.2 0.3 0.4
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