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ABOUT THESE PAGES 

Last updated 16 Dec 2005 

 

I have written these pages for researchers and students in the sport and exercise sciences. I also hope to 

get hits from students and researchers struggling to understand stats in other disciplines. 

If you're new to stats, most of what you read here will be a new view. But even if you have done some 

stats, there's plenty here that's new. For example, I've discarded most details of computation, in the hope 

that you will get a better understanding of the concepts. Let's leave the computations to the computers! 

You'll also find a new unified treatment of effect statistics and their magnitudes, a new emphasis and heaps 

of new stuff on validity and reliability, new valid methods to calculate reliability, a new exalted position 

for confidence intervals, a new attack on statistical significance and hypothesis testing, the first plain-

language explanation of Bayesian analysis on the Web, a new way to understand all statistical models, a 

new simple treatment of non-parametric analyses, a new method of doing repeated measures with missing 

values (yes, it's true!), new simple ways to estimate sample sizes, and best of all, a highly ethical new way 

to reduce sample size. And as you may have noticed, I am blazing a trail with the use of plain language for 

a text of this sort. 

To give the pages a bit of color, I have turned the "view" into a view of hills and mountains of statistical 

challenges. I add features to the picture, as I climb them. Please email me if there are any you would like 

included, or if I'm sending people up the wrong track. 

I hope some of the ideas and methods here will end up being referenced. Check how your institution or the 

journal you are submitting to wants you to reference websites. Here is a one way to reference the book: 

Hopkins WG (2000). A New View of Statistics, http://newstatsi.org. Accessed 31 April 2006. 

The (2000) refers to the first date of publication. 

References to specific pages or sections should include a subject heading, for example: 

Hopkins WG (2003).  Bayesian analysis.  In: A New View of Statistics, 

http://newstats.org/generalize.html#Bayes.  Accessed 31 April 2006. 

The (2003) refers to the update date at the bottom of the page. Note that newstats.org and 

sportsci.org/resource/stats are synonymous. 

To bookmark a particular page, you will have to right-click or control-click to open it in a new frame first. 

When it loads, you won't have a navigation/index frame on the left. You also won't get the navigation frame 

if you type in the URL for an individual page to load it. Clicking on Home brings up the navigation/index 

frame. 
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Summarizing Data: 

SIMPLE STATISTICS & EFFECT STATISTICS 

People hate numbers, and they can't understand them in bulk. That's why you have to summarize 

data when you present results of your research. You probably know most of the peaks on this part of the 

statistical map already: frequency distributions, simple statistics like the mean and standard 

deviation, effect statistics like correlation coefficients, and so on. You may not have attempted to master 

things like effect size, relative frequencies and risks, a scale of magnitudes for effects, dimension 

reduction, validity, reliability, and the finer points of how many digits to use, but they're all easy enough. 

The only other big feature on the statistical map is generalizing to a population. That's where you use a 

bunch of numbers from a few subjects to make inferences about everyone's numbers. More about that 

later. 

 BASICS

 

Let's make sure you understand terms like data, variable, frequency distribution, probability, 

and statistics. 

  

 Data and Variables

 

Data are usually just a set of numbers. Often they are a set of numbers representing the same kind of 

thing, like body weight. That "thing" is called a variable, because the numbers vary from subject to subject. 

If the numbers are the same, the thing is called a constant. 

I said usually a set of numbers, because some data are a set of labels, names, or levels. Again, when 

these labels represent the same kind of thing, that thing is a variable. For example, the 

labels male and female are values for the variable sex. Variables with numbers as values are 

called numeric; variables with names or labels as values are called nominal, for obvious reasons. 

Numeric variables come in several varieties. Things like height and weight are the usual kind. These can 

have just about any value to as many decimal places as we like, so we call them continuous. An example 

of a variable that is not continuous is a count, such as the number of injuries a person has experienced. 

One other kind of variable can't decide whether it's numeric or nominal. A good example is competitive 

level, with values of novice, club, national, international. There is an obvious order in the levels: novice is at 

the bottom, club is next, and so on, so we call the variable ordinal. It's usual to recode each level with an 

integer (1=novice, 2=club, 3=national, 4=international). 

Here is an example of a data set with three nominal variables, two continuous numeric variables, one 

ordinal variable, and one counting variable: 

subject weight height sex sport level injuries 

AJH 63 170 female swimming 3 0 

CJD 78 185 male basketball 2 0 

NIH 68   female basketball 5 2 

ERF 69 177 male   1 1 

MBA etc. etc. etc. etc. etc. etc. 
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Each row in the data set represents the values of all the variables for one subject. It's called 

an observation. You can have missing values in the data set, too, as shown. 

Data for more than a few subjects and variables have to be summarized to make them palatable. You can't 

trot out the whole data set every time you want to talk about it. 

  

 Frequency Distributions

 

For numeric variables, one important way to summarize the values is to graph 

them as a frequency distribution. Here's what the weights of 200 athletes 

might look like in a frequency distribution done as a scatter plot, which shows 

a point for the number of times each weight occurs. 

You can also show the frequencies as vertical bars rather than points, in which 

case the figure is called a histogram. Most stats programs also have a clever 

way to show the values as a kind of histogram called a stem-and-leaf plot. 

When you see one it will be obvious what is going on. 

It's normal for data to have a symmetrical bell-shaped frequency distribution like the one shown. Hence the 

name: the normal distribution. Exactly why most things are normally distributed is a bit of a mystery. 

When you have lots of values for a variable, it's a good idea to get a stats program to do a frequency 

distribution or stem-and-leaf plot, so you can see if there are any obviously wrong outliers. Outliers are 

often just errors in data entry. It might be worth checking out the original data for the person on 50 kg in the 

above figure. You certainly would if the value was 40 kg. Even if the value is correct, you might have a 

good reason to exclude that observation. 

Summarizing the values of a nominal variable like sex is a simple matter. All you need is 

the frequency of each level. For example, a group of athletes might consist of 101 

basketballers, 49 footballers, and 51 others. One occurrence of the new sport football 

would be an example of an outlier in need of correction. You can display the frequencies 

graphically as proportions in a pie chart, as shown, or as a bar divided up in the right 

proportions. Pie charts seem to be frowned on in scientific publications, but you see them in magazines. 

  Probability

 

When you keep having a shot at something, like rolling a six-sided die and hoping for a "four", what 

proportion of your shots end up being successful? If it's a symmetrical die, the answer is obviously 1 in 6. 

That proportion is known as probability. We usually write the proportion or probability as p. In this 

example, p = 1/6 = 0.1666 = 0.17 (to two decimal places). 

Probability is obviously a number between 0 and 1. When it's 0, there's no way you'll be successful, and 

when it's 1 you'll win every time. You can't have negative probability. 

We can represent probability in several other ways. In the above example, we can talk about 1 chance in 6, 

17 times in 100, 17%, a likelihood of 0.17, or 17% likely. You'll also meet odds of 1 to 5, which means 1 

success for every 5 failures. Odds of 1 to 1 means a 50% chance of something happening (as in tossing a 

coin and getting a head), and odds of 99 to 1 means it will happen 99 times out of 100 (as in bad weather 

on a public holiday). 

A probability distribution is just a frequency distribution with each frequency divided by the total number 

of observations. It follows (although it's not obvious) that the area under a probability distribution has 

something to do with the probability of getting certain numbers. In the above example of the distribution of 

people's weights, if you draw someone at random from the population; the chance that they will have a 

weight between 60 and 70 kg is the area under the curve between 60 and 70 kg. What's more, the total 

area under a probability distribution is 1. Hmm... Too academic. Too technical. Not essential. But 

http://www.sportsci.org/resource/stats/summarize.html#freqdist
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you will need to feel comfortable with probability when we deal with p value, confidence limits, relative risk 

and odds ratio. 

  

 Statistics

 

A statistic is a number summarizing some aspect of the data. There are three kinds of 

statistic: simple statistics, effect statistics, and test statistics. Simple statistics are also known 

as univariate statistics, because they summarize the values of one variable. Effect statistics summarize the 

relationship between the values of two or more variables. Simple and effect statistics 

are descriptive statistics, as opposed to test statistics, which can wait until later! 

Let's start with simple statistics. The simplest of all is a count of the number of numbers or levels, also 

known as sample size. That's as far as it goes for a nominal variable. For numeric variables, we usually 

use two more simple statistics to give people an idea of what the original numbers are like: a statistic to 

represent the middle values of the data (on the next page), and a statistic to show how the data 

are spread out (on following pages). 

 Simple Statistics: THE MIDDLE

 

A statistic that represents the middle of the data is called a measure of centrality. The best is 

the mean or average. Just add up all the numbers and divide by the sample size. The mean is the best 

measure, partly because it uses more information in the data than any other measure of centrality. 

The median, or "middle" number, can be useful for data with a non-normal distribution. To work it out, 

arrange the numbers in rank order (smallest to largest), then count in from one end until you find the 

middle. (If the sample size is an even number, take the average of the two middle numbers.) The median is 

not affected by outliers, which is a big point in its favor. But if you're interested in getting an estimate of the 

center of a population or of a subgroup of a population--and you usually are--the median is a coarse or 

"noisy" measure. 

The mode, or most frequent number, is the only other measure of centrality you'll ever encounter. I've 

never used it. 

 Simple Statistics: THE SPREAD

 
Some statistics give an idea of spread, variation, or dispersion of the numbers. The simplest measure of 

spread is the range, expressed either as the biggest and smallest number in the data (e.g. 61-74), or as 

the difference between the biggest and smallest (e.g. 13). 

The range is a bad measure of spread, for two reasons. First, it's dictated by outliers, whether they're errors 

in data entry or genuine values. Secondly, the range is dependent on the size of your sample: the more 

numbers, the bigger the range is likely to be. Two measures of spread that avoid these problems are 

the standard deviation (SD) and percentile ranges. I'll deal with these separately, and with these other 

measures of variation: the root mean square error (RMSE) and the standard error of the 

estimate (SEE). I explain on a separate page why the standard error of the mean is a measure of spread 

you should not use. 

The statistics most people use to describe a set of numbers are sample size, mean, and standard 

deviation. All you need to define the shape of the normal distribution is the mean and the standard 

deviation. The mean and standard deviation are often written as mean ± SD: 67.8 ± 3.6 kg, for example. 

In dealing with the spread in a bunch of numbers, we often think about the numbers as representing values 

of some characteristic, such as weight, for different subjects. But the bunch of numbers could represent the 

http://www.sportsci.org/resource/stats/pvalues.html
http://www.sportsci.org/resource/stats/generalize.html#viacl
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http://www.sportsci.org/resource/stats/simple.html
http://www.sportsci.org/resource/stats/effect.html
http://www.sportsci.org/resource/stats/meansd.html
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weight of a single subject measured many times. We talk about between-subject variation and within-

subject variation to distinguish between these two types of spread. Within-subject variation comes up 

soon as a useful measure of reliability. 

 Standard Deviation

 
The standard deviation is usually the best measure of spread. It has a complicated definition: take the 

distance of each number from the mean, square it, average the result, then take the square root. In short, 

it's the root mean square of the distances (or differences) from mean. It's usually abbreviated as SD in 

scientific journals and as s in stats books and stats journals. 

Actually, when you take the mean or average of the squares, you have to divide by n - 1 (one less than the 

sample size). Dividing by n gives you a biased estimate. Obviously for large n it doesn't matter whether you 

use n or n-1, but for n<20 it starts to make a difference. When using a calculator to work out a standard 

deviation, press the sn-1 button, not sn. 

The figure shows how big one SD looks on a frequency distribution for a 

normally distributed variable like height. I've shown the frequencies (number of 

subjects) as a continuous curve rather than as discrete points for each value 

of height. The best way to think about the SD is that about two-thirds of the 

values of a variable are found within one SD each side of the mean. 

The standard deviation is sometimes expressed as a percent of the mean, in 

which case it's known as a coefficient of variation. When the SD and mean 

come from repeated measurements of a single subject, the resulting 

coefficient of variation is an important measure of reliability. This form of within-subject variation is 

particularly valuable for sport scientists interested in the variability an individual athlete's performance from 

competition to competition or from field test to field test. The coefficient of variation of an individual athlete's 

performance is typically a few percent. 

A measure of spread closely related to the SD is the variance, which is simply the square of the SD. I can't 

show you variance on a diagram. Statisticians prefer it to the SD, but it's not much use for researchers. 

 Root Mean-Square Error (RMSE)

 

The RMSE is a kind of generalized standard deviation. It pops up whenever you look for differences 

between subgroups or for other effects or relationships between variables. It's the spread left over when 

you have accounted for any such relationships in your data, or (same thing) when you have fitted a 

statistical model to the data. Hence its other name, residual variation. I'll say more about residuals for 

models, about fitting models in general, and about fitting them to data like these much later. 

Here's an example. Suppose you have heights for a group of females and males. 

If you analyze the data without regard to the sex of the subjects, the measure of 

spread you get will be the total variation. But stats programs can take into 

account the sex of each subject, work out the means for the boys and the girls, 

then derive a single SD that will do for the boys and the girls. That single SD is 

the RMSE. Yes, you can also work out the SDs for the boys and girls separately, 

but you may need a single one to calculate effect sizes. You can't simply average 

the SDs. 

 

 

 

http://www.sportsci.org/resource/stats/precision.html#relymeas
http://www.sportsci.org/resource/stats/errors.html#bias
http://www.sportsci.org/resource/stats/precision.html#relycv
http://www.sportsci.org/resource/stats/modelsdetail.html#residuals
http://www.sportsci.org/resource/stats/modelsdetail.html#residuals
http://www.sportsci.org/resource/stats/models.html
http://www.sportsci.org/resource/stats/ttest.html
http://www.sportsci.org/resource/stats/effect.html
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 Standard Error of the Estimate (SEE)

 

The SEE is another example of a root mean square error. This time we're fitting a line to the data, to make 

predictions. The SEE tells us something about the accuracy of the predictions. 

The figure shows an important example: how to predict body fat from skinfold 

thickness. You measure the skinfold thickness and body fat of several 

hundred subjects, then draw the best straight line through the points. The 

SEE represents the scatter of points about the line for any given value of 

skinfold thickness, which means it's the "error"--actually a standard deviation-

-in predicting body fat from a given value of skinfold thickness. As drawn for 

these imaginary data, it's about 3%. Whenever you measure the skinfold 

thickness on subjects in future and use the straight line to predict their body 

fat, you will know that you could be wrong by typically 3%. 

Incidentally, the SEE--the scatter of body fat about the line for a given skinfold thickness--is assumed to be 

the same for every value of skinfold thickness. In other words, it doesn't matter where you are on the line, 

it's the same scatter in the vertical direction. I know it looks like there is less scatter at the ends of the line, 

but that's only because there are less points there. A hard one for newbies to understand! 

Here's another important "incidentally". You can use a prediction line only for subjects similar to (drawn 

from the same population as) the subjects you used to make the prediction line in the first place. A line 

based on active young female athletes is no good for predicting body fat in sedentary middle-aged males. 

The SEE would also be wrong. 

 Percentile Ranges

 

The most common of these is the interquartile range, although even 

this is a seldom-visited feature on the statistical map. It is used with the 

median to give an idea of centrality and spread of skewed or otherwise 

grossly non-normally-distributed variables. Measures of training are often 

skewed enough to merit use of percentiles instead of the mean and 

standard deviation. For example, weekly training in a group of novice 

athletes might have a median of 5 and an interquartile range of 3-12 

hours/week. 

Here's something challenging for the real lovers of numbers. The mean ± SD encloses 68% of the data on 

average for a normally distributed variable. So if you want to use a percentile range that corresponds to the 

mean ± SD, what should it be? Answer: 16th-84th. If I had my way, this measure would replace the 

interquartile range. We could call it the standard percentile range… 

We're right out on the horizon now. Let's get back to familiar territory. 

 EFFECT STATISTICS

 
All the statistics we've met so far summarize a set of values of a single variable. But it's possible to have 

statistics describing the relationship between two or more sets of numbers. These are the statistics that 

really matter in research. 

There is no agreed generic name for these statistics. I've seen measures of effect in the literature, so let's 

call them effect statistics. The effect refers to the idea that one variable has an effect on another. The 

main effect statistics are the difference in means (this page), thecorrelation coefficient (next 

page) and relative frequency (following page). Each of these effect statistics comes in several varieties, I 

http://www.sportsci.org/resource/stats/linreg.html
http://www.sportsci.org/resource/stats/correl.html
http://www.sportsci.org/resource/stats/correl.html
http://www.sportsci.org/resource/stats/relfreq.html
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close this section with a page on a scale of magnitudes for effect statistics 

  

 Difference in Means

 
Sometimes you can express the finding of a study simply as a difference between the means of two 

groups, in the original raw units of measurement. For example, a group of elite male runners has a mean 

body mass of 66.4 kg, whereas a subelite group weighs in with an average of 68.5. The difference of 2.1 kg 

is the effect. 

Depending on the variable, you often want to talk about the difference between means as a percent 

difference. In the above example, you could say that the subelite runners are 3.2% heavier than the elites 

(2.1/66.4 = 0.032 = 3.2%). Percent differences are a natural way to express differences in the mean of 

variables that need log transformation. Percent effects are particularly appropriate for measures of athletic 

performance. 

Converting the difference to a percent is one way to make the 

difference dimensionless, and therefore more generic. Another important way is to 

express the difference as a fraction or multiple of a standard deviation. Work out the 

difference between the means, then divide it by the average standard deviation for the 

two groups. What you end up with is the standardized difference in the means, a 

number that represents "how many standard deviations" the two groups differ by. Look 

closely at the imaginary example in the figure and work out the effect size for the difference in body fat 

between boys and girls. Answer: one unit, or 1.0, or one standard deviation. Note that the unit of 

measurement for body fat is irrelevant. I've shown it as the usual % of body mass, but it could be kg or 

pounds--the effect-size statistic has the same value. The effect-size statistic is appropriate for studies of 

population health, where differences or changes in means that impact the average person are paramount. 

The standardized difference in the means is sometimes known simply as the effect-size statistic, although 

this term confuses the concept with the magnitude of other kinds of effect. A page on this topic comes 

up shortly. Meanwhile, to get you thinking about it, how big is the effect shown in the above figure? This 

difference of one standard deviation has been regarded as large, although I now think it's only 

a moderate effect. Anything less than 0.2 standard deviations isn't worth worrying about. 

The example above is for two groups of subjects, but you should also use the concept of effect size when 

looking at changes in the mean as a result of an experiment. For example, the above two bars could 

represent muscle mass before and after treatment with anabolic steroids. In this case you use the SD of the 

pre scores only to standardize the effect. (I'd figured this out years ago, but until Oct 06 I missed a mistaken 

assertion on this page that you average the pre and post SDs. Sorry about that.) Some people think 

mistakenly that you should use the SD of the change scores to standardize effects in experiments. If you 

have a control group as well, you use the SD of all the pre scores, and you subtract the change in the 

control group from the change in the experimental group to get the magnitude of the experimental effect. 

When you understand effect sizes, you'll know why you should always show standard deviations rather 

than standard errors of the mean with means. See the page devoted this important issue. 

 Correlation Coefficient

 
Let's return to our example of skinfolds and body fat. The correlation coefficient (r) 

indicates the extent to which the pairs of numbers for these two variables lie on a 

straight line. The correlation for this example is 0.9. If the trend went downward 

rather than upwards, the correlation would be -0.9. For perfect linearity, r = ±1. If 

there is no linear trend at all--for example, if there is a random scatter of points--the 

value of r is close to zero. Points distributed evenly around a circle would also give a 

correlation of near zero, because there would be no overall linear trend. 

http://www.sportsci.org/resource/stats/effectmag.html
http://www.sportsci.org/resource/stats/logtrans.html
http://www.sportsci.org/resource/stats/effectmag.html
http://www.sportsci.org/resource/stats/meansd.html
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Which brings us to the question of how big a correlation has to be before it means anything. Correlations of 

less than 0.1 are as good as garbage. The correlation shown, 0.9, is very strong. Correlations have to be 

this good before you can talk about accurately predicting the Y value from the X value, especially when you 

want to use the result of the prediction to rank people. You can understand that by looking at the scatter of 

body fat about the line for a given value of skinfold thickness (the standard error of the estimate): it's still 

quite large, even for this correlation of 0.9. More on magnitudes of correlations shortly. 

The details of calculation of correlations needn't concern us, because the stats packages do all that for us. 

But you should learn that the correlation between two variables X and Y is defined as the covariance of X 

with Y (covarXY) divided by the product of the standard deviation of X (stdevX) and the standard deviation 

of Y (stdevY): 

r = covarXY/(stdevX·stdevY). 

We've already met the variance: it's the mean value of all the differences from the mean multiplied by 

themselves (=squared). The covariance is similar: it's the mean value of all the pairs of differences from the 

mean for X multiplied by the differences from the mean for Y. If X and Y aren't closely related to each other, 

they don't co-vary, so the covariance is small, so the correlation is small. If X and Y are closely related, 

covarXY turns out to be almost the same as stdevX·stdevY, so the correlation is almost 1. 

There are several important kinds of correlation, differing in the details of calculation. The most common is 

known as the Pearson (after a famous statistician). An older name is the product-moment correlation, 

which refers to the way it's calculated. The Pearson is what you get when you fit the best straight line to a 

set of points, such that the points are closest to the line when measured in the Y direction--the usual least-

squares line, in other words. The topic of fitting lines and curves comes up in more detail later. 

By the way, if the X and Y variables have the same standard deviation, the slope of the line is the 

correlation coefficient. Or to put it another way, if you normalize the X and Y variables by dividing them by 

their standard deviations, the slope of the line is the correlation coefficient. 

Two more important kinds of correlation are the Spearman and intraclass correlation coefficient (ICC). 

The Spearman comes up later in connection with non-parametric tests. The ICC is used as a measure of 

the reliability of a variable, whereas the Pearson is used for thevalidity of the variable. The values of the 

Pearson, Spearman, and intraclass correlation coefficients are usually similar for the same set of data. 

  

The strength of the relationship between X and Y is sometimes expressed by squaring the correlation 

coefficient and multiplying by 100. The resulting statistic is known as variance explained (or R2). Example: 

a correlation of 0.5 means 0.52x100 = 25% of the variance in Y is "explained" or predicted by the X variable. 

The reason why squaring a correlation results in a proportion of variance is a consequence of the way 

correlation is defined. You don't need to know the details right now. See later. 

 Difference in Frequency

 
We seldom use the raw counts of something when we compare frequencies. In the 

example shown on the right, there may have been 600 non-smokers who had heart 

disease, out of a sample of 2000 non-smokers altogether, so we usually talk about 

30% of the non-smokers having heart disease. A percent frequency makes it easier 

to compare the rate of heart disease in other groups, for example smokers. But how 

do we now actually compare the frequencies? The simplest way is to subtract them: 

the difference in rate of heart disease is 45%. I think that's the best way, but it is not 

the usual way. Instead, researchers usually divide one frequency by the other. In the example, smokers 

would be 75/30, or 2.5 times as likely to develop heart disease as non-smokers. Or to put it another way, 

the relative risk of developing heart disease for smokers is 2.5. If the frequency of heart disease was the 

same in both groups, the relative risk would be 1.0, and if the frequency was less in smokers, the relative 

risk would be less than 1.0. 

http://www.sportsci.org/resource/stats/see.html
http://www.sportsci.org/resource/stats/effectmag.html
http://www.sportsci.org/resource/stats/modelsdetail.html#residuals
http://www.sportsci.org/resource/stats/nonparms.html
http://www.sportsci.org/resource/stats/precision.html
http://www.sportsci.org/resource/stats/valid.html
http://www.sportsci.org/resource/stats/modelsdetail.html#goodness
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It's hard to put a figure on what are considered small, medium and large differences between the 

frequencies of something in two groups, because it depends on the frequencies. If one group has about 

50% with a characteristic, a frequency of 60% or 40% in the other group can be considered small. That 

difference corresponds to a relative risk of about 1.2 (or 0.8, depending which way around the frequencies 

are). Once the frequencies get low (e.g. 1% in one group), relative risks have to be 2 or more before people 

get excited. 

Notice that the two groups differ in exposure to something that might cause the disease. A somewhat 

different statistic, the odds ratio, is used when the basis of the grouping is whether 

subjects already have the disease: in other words, when the groups 

are cases and controls. In the example shown, the odds of being a smoker in the 

heart-disease group are 75/25 = 3. Similarly, the odds of being a smoker in the 

healthy group are 30/70 = 0.43. The odds ratio is therefore 3/0.43 = 7. Interpret this 

statistic as "seven people with heart disease smoke for every healthy person who 

smokes". Or, if you had two people in front of you, a healthy person who smokes and 

a person with heart disease, you would break even in the long run by betting at odds 

of 7:1 that the person with heart disease is a smoker. Fine, but I still have trouble getting my brain around 

this statistic. Are those odds good or bad, in terms of the effect of smoking on heart disease? I don't know. I 

guess I don't work with this statistic enough to have a feel for it. (I used to have here "seven smokers have 

heart disease for every one smoker who doesn't" or "if you are a smoker, odds are 7 to 1 that you have 

heart disease", but these interpretations are wrong. Thanks, Chris Rhoads!). 

 A Scale of Magnitudes for Effect Statistics

 

Suppose you get a correlation of 0.47 between two variables. Is that big or small, in the scheme of things? 

If you haven't a clue, you're not alone. Most people don't know how to interpret the magnitude of a 

correlation, or the magnitude of any other effect statistic. But people can understand trivial, small, 

moderate, and large, so qualitative terms like these need to be used when you discuss results. One day, 

stats programs will include these terms in their output. In the meantime, we have to do the job manually 

using a scale of magnitudes. I'll now explain a scale of magnitudes for linear trends (using the correlation 

coefficient), differences in means (using the standardized difference), and relative frequencies 

(using relative risks, odds ratios, and differences in frequencies). 

Correlations 

  

Jacob Cohen has written the most on this topic. In his well-known book he suggested, a little ambiguously, 

that a correlation of 0.5 is large, 0.3 is moderate, and 0.1 is small (Cohen, 1988). The usual interpretation of 

this statement is that anything greater than 0.5 is large, 0.5-0.3 is moderate, 0.3-0.1 is small, and anything 

smaller than 0.1 is insubstantial, trivial, or otherwise not worth worrying about. His corresponding 

thresholds for standardized differences in means are 0.8, 0.5 and 0.2. He did not provide thresholds for the 

relative risk and odds ratio. 

For me, the main justification for this scale of correlations comes from the interpretation of the correlation 

coefficient as the slope of the line between two variables when their standard deviations are the same. For 

example, if the correlation between height (X variable) and weight (Y variable) is 0.7, then individuals who 

differ in height by one standard deviation will on average differ in weight by only 0.7 of a standard deviation. 

So, for a correlation of 0.1, the change in Y is only one-tenth of the change in X. That seems a reasonable 

justification for calling 0.1 the smallest worthwhile correlation. I guess it's also reasonable to accept that a 

change in Y of one half that in X (corresponding to r = 0.5) is also the threshold for a large effect, and 

r = 0.3 seems a logical way to draw the line between small and moderate correlations. 

Threshold values for standardized differences or changes in means and for relative frequency can be 

derived by converting these statistics to correlations. The procedure is a little artificial, so the resulting 

values need to be scrutinized to ensure they make sense. Here's how it's done. 

http://www.sportsci.org/resource/stats/correl.html
http://www.sportsci.org/resource/stats/correl.html
http://www.sportsci.org/resource/stats/effect.html
http://www.sportsci.org/resource/stats/relfreq.html
http://www.sportsci.org/resource/stats/effectmag.html#cohen
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Differences in Means  

  

To work out a scale of magnitudes for differences or changes in means, you need a 

dimensionless measure comparable to the correlation coefficient. The best and 

possibly only such measure is the standardized difference. Cohen used the 

letter d to represent the standardized difference, and it is often known as Cohen's 

d. To see how to get thresholds for d from those for correlations, let's introduce a 

new predictor variable with the value of 0 for one group and 1 for the other, as 

shown in this example for the effect of fitness on blood pressure. (We can assign 

any number at all to each group, not just 0 and 1.) We then calculate the correlation 

between this variable and the dependent variable. If the standardized difference between the means is d 

(the difference in the means divided by the standard deviation in either group, here assumed to be the 

same), it's possible to show from the definition of a correlation that r = d/√(d2+4), or rearranging, d = 2r/√(1-

r2). It follows that correlations of 0.1, 0.3, and 0.5 correspond to standardized differences in means of 0.20, 

0.63, and 1.15. 

Problem! Cohen's thresholds for small, moderate and large are 0.20, 0.50 and 0.80. The lowest of these 

two sets of values agree (0.20), but the others don't. Cohen derived his thresholds from a consideration of 

non-overlap of the distributions of values in the two groups. He chose certain arbitrary amounts of non-

overlap as defining his thresholds. The thresholds for small obviously correspond, but the others don't. 

Something like Cohen's thresholds for standardized differences can be got by making the independent 

variable normally distributed, then "dichotomizing" it by splitting its values down the middle to make the two 

fitness groups. Correlations of 0.1, 0.3, and 0.5 then turn into standardized differences of 0.17, 0.50, and 

0.87: yet another set of thresholds! Which set is correct? I think that this dichotomizing operation throws 

away information, and that therefore the values of 0.17, 0.50 and 0.87 underestimate the thresholds. 

I'm happy to agree with Cohen that 0.20 is the threshold for smallest standardized differences in a mean. If 

we also assume that the thresholds of 0.1, 0.3 and 0.5 for correlations are acceptable, there is another 

approach to demonstrating that the other thresholds for standardized differences in the mean should be 

0.63 and 1.15. Assume further that the X and Y variables are normally distributed. Consider first a 

correlation of 0.1. Imagine you are comparing two individuals with X values that differ by an amount a. They 

will, of course, have different Y values. From one of the meanings of the correlation coefficient, the 

difference in the Y values is a.r.SDy/SDx, where SDy and SDx are the standard deviations of the Y and X 

variables. To standardize this difference, we have to divide it by the appropriate standard deviation, which 

in this case is the standard error of the estimate, given by SDy√(1-r2). The standardized difference in the Y 

values is therefore a.r.SDy/SDx/(SDy√(1-r2)) = (a/SDx)(r/√(1-r2)). So, if we want a smallest correlation of 0.1 

to be equivalent to a smallest standardized difference of 0.20 between two individuals, the individuals have 

to differ on average by 2 standard deviations of the X values: (2SDx/SDx)(0.1/√(1-0.12) = 0.20. It follows 

that the standardized difference corresponding to any correlation r should be the difference corresponding 

to 2 standard deviations of the X values, and the formula to convert a correlation to an equivalent 

standardized difference in the means is therefore 2r/√(1-r2). Note that this formula is the same as in the first 

paragraph of this section, so the thresholds for moderate and large are 0.63 and 1.15. 

One reality check on these thresholds comes from considering the average separation between individuals 

in a normally distributed population. It turns out to be 1.13 standard deviations, which is a standardized 

difference of 1.13. So we have to ask: is it reasonable that the average difference between individuals in a 

population should be on the threshold between moderate and large? I think so, and I therefore think that 

Cohen's 0.5 and 0.8 are too low to define the thresholds for moderate and large effects. 

 

 

 

http://www.sportsci.org/resource/stats/effect.html#effectsize
http://www.sportsci.org/resource/stats/correl.html
http://www.sportsci.org/resource/stats/correl.html
http://www.sportsci.org/resource/stats/see.html
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Relative Frequencies 

  

To work out a scale for comparing frequencies, we have to code not only the 

grouping variable, but also the dependent variable. See the example on the right, in 

which a cluster of points represents the frequencies for each level of the 

independent and dependent variables. Once again the values of 0 and 1 for the 

variables don't matter, but if we represent the frequencies as percents in each 

group, we get something really nice. For the example shown, heart disease was 

75% in the smoking group and 30% in the non-smoking group. The difference in 

frequencies (75 - 30 = 45%) divided by 100 is 0.45, which turns out to be the 

correlation between our two newly coded variables. This result--the correlation times 100 equals the 

difference in percent frequencies--is true for all frequencies. The threshold correlations of 0.1, 0.3, and 0.5 

therefore convert to thresholds of 10, 30 and 50 for differences in percent frequencies between the 

occurrence of something in two groups. 

Now, are you happy with the notion that a difference of 10% in the frequency of something between two 

groups is indeed small? For example, if you made sedentary people active and thereby reduced the 

incidence of heart disease from 55% to 45% in some age group, would that be a small gain? At first glance 

you'd think this gain might be better described as moderate. Perhaps the way to view it is that the 10% in 

question is only one tenth of the entire group. On an absolute population basis, we may be talking about a 

lot of people, but it's still only one in 10. The threshold between moderate and large represents something 

that affects half the group, which seems OK. The boundary between small and moderate (three people in 

10) is also acceptable. 

Frequency differences do not convert simply into relative risks, because the values of this statistic depend 

on the frequencies in each group. For example, the threshold frequency difference of 10% for the smallest 

worthwhile effect represents a relative risk of 55/45 or 1.22 if the frequencies are 55% and 45%, but the 

relative risk is 11 if the frequencies are 11% and 1%. The odds ratio is even more sensitive to the absolute 

frequencies in each group. The smallest values for the relative risk and odds ratio occur when the 

frequencies in the two groups are symmetrically disposed about 50% (55-45, 60-40, 65-35 and so on). 

The Complete Scale 

  

It seems to me that the vista of large effects is left unexplored by Cohen's scale. Surely more than 

just large can be applied to the correlations that lie between 0.5 and 1? What's missing from the picture is a 

rationale for breaking up this big half of the scale with a couple more levels. Here's the way I do it: 

 
 

trivial 

 

small 

 

moderate 

 

large 

very 

large 

nearly 

perfect 
perfect 

Correlation 0.0 0.1 0.3 0.5 0.7 0.9 1 

Diff. in means 0.0 0.2 0.6 1.2 2.0 4.0 infinite 

Freq. diff. 0 10 30 50 70 90 100 

Rel. risk 1.0 1.2 1.9 3.0 5.7 19 infinite 

Odds ratio 1.0 1.5 3.5 9.0 32 360 infinite 

 

I've adopted a Likert-scale approach by using very for the level above large, and I've assigned it to a 

correlation of 0.7 to keep the scale linear for correlations and frequency differences. A level of magnitude 

above very large is warranted for correlations, because a value of 0.9 is a kind of threshold for validity when 

the associated straight line is used to rank individuals, and reliability needs to be greater than 0.9 to be 

most useful for reducing sample sizes in longitudinal studies. I've opted for nearly perfect to describe these 

http://www.sportsci.org/resource/stats/valid.html
http://www.sportsci.org/resource/stats/precision.html
http://www.sportsci.org/resource/stats/ssdetermine.html#long
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correlations. Values for the other effect statistics were calculated as before, and the values for the relative 

risk and odds ratio are the minimum values for these statistics. 

To finish, here is a graphical representation of the scale... 

 

...and a table of synonyms for the descriptors (for simplicity, only for the correlation coefficient). Use of 

these synonyms shouldn't lead to any confusion about the magnitude of the effect: 

Correlation 

Coefficient 
Descriptor 

0.0-0.1 trivial, very small, insubstantial, tiny, practically zero 

0.1-0.3 small, low, minor 

0.3-0.5 moderate, medium 

0.5-0.7 large, high, major 

0.7-0.9 very large, very high, huge 

0.9-1 nearly, practically, or almost: perfect, distinct, infinite 

SAS programs that generated the results on this page are attached. 

  

Other Effect Statistics 

  

Cohen devised several other effect statistics and discussed their magnitudes, but I have not seen these 

statistics in publications. He also considered whether, for example, variance explained (the correlation 

squared) might be a more suitable scale to represent magnitude of linearity, especially when you take into 

account the useful additive property of variance explained in such things as stepwise regression. He 

rejected it, though, because a correlation of 0.1 corresponds to a variance explained of only 1%, which he 

thought did not convey adequately the magnitude of such a correlation. I agree. 

The so-called common-language effect statistic (McGraw & Wong, 1992) or probability of 

superiority represents a more recent attempt on the summit of a universal scale of magnitudes. This 

statistic is easiest to understand when you compare two groups whose means differ. The probability of 

superiority is the probability that someone drawn at random from one group will have a higher value than 

someone drawn from the other group. The problem here is that no difference between the means implies a 

value of 50% or 0.5 (equal chance that the person will have a higher or lower value). A value of 50% for no 

difference doesn't feel right. 

 

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). New Jersey: Lawrence 

Erlbaum. 

McGraw, K. O., & Wong, S. P. (1992). A common language effect-size statistic. Psychological Bulletin, 111, 

361-365. 

 

http://www.sportsci.org/resource/stats/simmag.html
http://www.sportsci.org/resource/stats/modelsdetail.html#goodness
http://www.sportsci.org/resource/stats/multiple.html#stepwise
http://www.sportsci.org/resource/stats/effectmag.html#mcgraw
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Summarizing Data: 

DIMENSION REDUCTION 

Dimension reduction is a way of devising one or two variables to summarize the information contained in a 

whole lot of other variables. The three methods of dimension reduction are principal components 

analysis, factor analysis, and cluster analysis 

 PRINCIPAL COMPONENTS ANALYSIS

 

When you take lots of different measurements in a study, you sometimes want to combine them in some 

way to derive just one or two measures that summarize some aspect of the data. For example, you might 

have five different measures of body size, but would like to have simply one or two summary measure that 

combine the five. The summary measures are provided by principal components analysis. 

All you do is tell the stats program what variables you want it to analyze. It comes up with a linear 

combination of the variables that somehow captures the biggest amount of common variation in all of them. 

It then goes on to produce another linear combination that captures the biggest amount of variation in 

what's left, and so. If you start with three variables, you'll get three principal components. The nice thing 

about them is, they are not correlated with each other, so they represent three totally independent 

measures. Exactly what they represent in reality has to be decided by looking at the weighting factors that 

the stats program derives to make the principal components. Sometimes it's not obvious that they represent 

anything meaningful, and you might have to abandon this approach.  

 FACTOR ANALYSIS

 

Here you want combinations of variables with equal weighting, and you're generally not concerned if the 

resulting composites are correlated. This method is used by psychologists (or their statisticians) to derive 

distinct dimensions of the psyche from subsets of items in multi-item questions. Factor analysis divides the 

items into subsets such that items correlate well within each subset but not so well between subsets. Each 

subject then gets a mean score for the items in each subset . The researcher has to decide what to call the 

mean scores by looking at the wording of the items. 

It's a few years since I did factor analysis, which is why this section is so short! If there is a demand for it, I 

will include the detail on such things as promax rotation and deciding where to draw the line for inclusion of 

variables in a factor.  

 CLUSTER ANALYSIS

 

This is a particularly severe form of dimension reduction that reduces all variables 

and data down to one variable with only a few values (e.g. group A, group B, and 

group C). It's easiest to understand from the example in the figure, which shows 

heights and weights for a bunch of people who obviously fall into three groups or 

"clusters": 

You can let the stats program decide on the number of clusters, or you can force it 

to find as many as you like. The program decides which observations belong to which cluster by minimizing 

the distances between points in each cluster. You are not restricted to two variables, of course. It's 

impossible to imagine clusters for more than three variables (unless you are an Einstein), but the stats 

program handles it without any problem. 
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Cluster analysis is used in market research, where you want to identify a few major target groups in a 

population. And it's a cool way of identifying groups in the population with particular lifestyles. Variables 

used in the cluster analysis might be age, sex, socio-economic status, level of physical activity, measures 

of diet, and so on. 

Summarizing Data: 

PRECISION OF MEASUREMENT 

 

How precise are your measurements? An important question, because the lower the precision, the more 

subjects you'll need in your study to make up for the "noise" in your measurements. Even with a larger 

sample, noisy data can be hard to interpret. And if you are an applied scientist in the business of testing 

and assessing clients, you need special care when interpreting results of noisy tests. 

The two most important aspects of precision are reliability and validity. Reliability refers to the 

reproducibility of a measurement. You quantify reliability simply by taking several measurements on the 

same subjects. Poor reliability degrades the precision of a single measurement and reduces your ability to 

track changes in measurements in the clinic or in experimental studies. Validity refers to the agreement 

between the value of a measurement and its true value. You quantify validity by comparing your 

measurements with values that are as close to the true values as possible. Poor validity also degrades the 

precision of a single measurement, and it reduces your ability to characterize relationships between 

variables in descriptive studies. 

The concepts of reliability and validity are related. For example, a little thought will satisfy you that 

measurements can be reliable but not valid, and that a valid measurement must be reliable. But we usually 

deal with these two concepts separately, either because most researchers study them separately, or 

because bringing the two concepts together is mathematically difficult. I've had a shot at combining them, 

but there's much more work to do. 

Here's the route map for this excursion. We begin with measures of reliability, then there are separate 

pages for applications of reliability and calculations for reliability. We'll deal with measures of validity and 

calculations for validity on one page, followed by applications of validity. Along the way there are three 

spreadsheets for various calculations: the precision of a subject's true value using reliability or 

validity, calculating reliability between pairs of trials, and calculating validity. Then there's a quick and easy 

page on precision in reporting measurements, and finally a page devoted to the all-important question 

of mean ± SD vs mean ± SEM. Some of the material on these pages is in Hopkins (2000). 

Update Oct 2011: view this slideshow on validity and reliability for an overview of the important principles. 

For a Powerpoint presentation (slide show) on the essentials of reliability and some of its uses (assessing 

individuals, estimating sample sizes, estimating individual responses), click here. This presentation was 

part of a mini-symposium entitled "Reliability, a Crucial Issue for Clinicians and Researchers" at the 2001 

annual meeting of the American College of Sports Medicine in Baltimore. 

 MEASURES OF RELIABILITY

 
The most common form of reliability is retest reliability, which refers to the reproducibility of values of a 

variable when you measure the same subjects twice or more. Let's get down to the detail of how we 

quantify it. The data below, and the figure, show an example of high reliability for measurement of weight, 

for 10 people weighed twice with a gap of two weeks between tests. I'll use this example to explain the 

three important components of retest reliability: change in the mean, typical error, and retest correlation. I'll 

finish this page with two other measures of reliability: kappa coefficient and alpha reliability. 

 

http://www.sportsci.org/resource/stats/precision.html#relymeas
http://www.sportsci.org/resource/stats/relyappl.html
http://www.sportsci.org/resource/stats/relycalc.html
http://www.sportsci.org/resource/stats/valid.html
http://www.sportsci.org/resource/stats/validappl.html
http://www.sportsci.org/resource/stats/relyappl.html#excel
http://www.sportsci.org/resource/stats/relycalc.html#excel
http://www.sportsci.org/resource/stats/valid.html#excel
http://www.sportsci.org/resource/stats/digits.html
http://www.sportsci.org/resource/stats/meansd.html
http://www.sportsci.org/resource/stats/precision.html#hopkins
http://www.sportsci.org/resource/stats/ValidityAndReliability.ppt
http://www.sportsci.org/resource/stats/rely_new_uses.ppt
http://www.sportsci.org/resource/stats/precision.html#shift
http://www.sportsci.org/resource/stats/precision.html#tem
http://www.sportsci.org/resource/stats/precision.html#relycorr
http://www.sportsci.org/resource/stats/precision.html#relynom
http://www.sportsci.org/resource/stats/precision.html#alpha
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Test 

1 

Test 

2 

  

57.5 57.4 

65.6 63.2 

67.0 66.5 

68.5 69.9 

70.8 72.8 

72.2 70.1 

74.9 75.6 

76.0 75.2 

76.1 72.8 

83.1 79.0 

 

 Change in the Mean

 
The dotted line in the figure is the line representing identical weights on retest. Notice that most of the 

subjects are below the line: they were a bit lighter in the second test. To put a number on the change in 

weight, you subtract the mean of all the subjects for Test 1 (71.2 kg) from that for Test 2 (70.3 kg). The 

result (-0.9 kg) is the change in the mean: the difference between the means for two tests. The change 

consists of two components: a random change and a systematic change. 

Random change in the mean is due to so-called sampling error. This kind of change arises purely from 

the typical error, which is like a randomly selected number added to or subtracted from the true value every 

time you take a measurement. The random change is smaller with larger sample sizes, because the 

random errors from all the measurements contributing to the mean tend to cancel out more. 

Systematic change in the mean is a non-random change in the value between two trials. If the drop in 

weight in our example is a systematic change, it could be due to changes in the the subjects' behavior 

between trials. In tests of human performance that depend on effort or motivation, subjects might also 

perform the second trial better because they want to improve. Performance can be worse in a second trial if 

fatigue from the first trial is present at the time of the second trial. Performance can also decline in a series 

of trials, owing to loss of motivation. 

Systematic change in the mean is an important issue when subjects perform a series of trials as part of a 

monitoring program. The subjects are usually monitored to determine the effects of an intervention (e.g., a 

change in diet or training), so it is important to perform enough trials to make learning effects or other 

systematic changes negligible before applying the intervention. 

Systematic change is less of a worry for researchers performing a controlled study, because only the 

relative change in means for both groups provides evidence of an effect. Even so, the magnitude of the 

systematic change is likely to differ between individuals, and these individual differences make the test less 

reliable by increasing the typical error. You should therefore choose or design tests or equipment with small 

learning effects, or you should get subjects to perform practice (familiarization) trials to reduce learning 

effects. 
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How do you tell whether an observed change in the mean is a reproducible systematic effect? You work out 

and interpret the confidence limits for the mean, which represent the likely range of the true (systematic) 

change. 

 Typical Error of Measurement

 
Notice that our subjects didn't have exactly the same weight in the first and second tests. Sure, part of the 

problem is that everyone got a bit lighter, but even when you take the shift in the mean out of the picture, 

the weights on retest aren't exactly the same. To see what I mean, imagine that you reweighed one subject 

many times, with two weeks between each weighing. You might get something like: 

72.2, 70.1, 68.5, 69.9, 67.9, 69.6... 

The first few weights show a slight trend downwards--our subjects decided to lose a bit of weight, 

remember--then the weights level off, apart from a random variation of about a kilogram. That random 

variation is the typical error. We quantify it as the standard deviation in each subject's measurements 

between tests, after any shifts in the mean have been taken into account. The official name is the within-

subject standard deviation, or the standard error of measurement. From now on I will refer to it as 

the typical error of measurement, or simply typical error, because its value is indeed the typical error or 

variation in a subject's value from measurement to measurement. 

We talk about variation in measurements as error, but it's important to realize that only part of the variation 

is due to error in the sense of technological error arising from the apparatus. In fact, in the above example 

the variation is due almost entirely to biological variationin the weight of the subject. If we were to reweigh 

the subject with two minutes between weighings rather than two weeks, we'd get pure technological error: 

the noise in the scales. (We might have to take into account the fact that the subject would be getting 

slightly lighter all the time, through evaporation or trips to the bathroom.) Measurement error is a statistical 

term that covers variation from whatever source. It would be better to talk about measurement variation or 

typical variation, rather than error, but I might have trouble convincing my colleagues... 

I've explained the notion of typical error as variation for one subject, but in practice you calculate the 

average typical error for all the subjects. You can calculate it even when there are only two tests, and even 

when there is a shift in the mean between those tests. See the page on calculations for reliability and 

the reliability spreadsheet for details. For the weight data shown in the figure, the typical error is 1.4 kg. 

You can derive a closely related measure of error simply by calculating each subject's standard deviation, 

then averaging them. The result is the total error of measurement, which is a form of typical error 

contaminated by change in the mean. On its own the total error is not a good measure of reliability, 

because you don't know how much of the total error is due to change in the mean and how much is due to 

typical error. Some researchers and anthropometrists have used this measure, nevertheless. 

An important form of the typical error is the coefficient of variation: the typical error expressed as a 

percent of the subject's mean score. For the above data, the coefficient of variation is 2.0%. The coefficient 

of variation is particularly useful for representing the reliability of athletic events or performance tests. For 

most events and tests, the coefficient of variation is between 1% and 5%, depending on things like the 

nature of the event or test, the time between tests, and the experience of the athlete. For example, if the 

coefficient of variation for a runner performing a 10,000-m time trial is 2.0%, a runner who does the test in 

30 minutes has a typical variation from test to test of 0.6 minutes. 

If you use the coefficient of variation rather than the raw typical error, it makes sense to represent any 

changes in the mean between tests as percent changes. In our example of body weights, the shift in the 

mean of -0.9 kg is -1.2%. The percent shifts, and the coefficient of variation, can be derived by analysis of 

the log-transformed variable. See the page on calculations for reliability for details. 

All standard methods for calculating the typical error are based on the assumption that the typical error has 

the same average magnitude for every subject. If the typical error varies between subjects, statisticians say 

the data display heteroscedasticity, or non-uniform error. In this situation the analysis provides you with 

http://www.sportsci.org/resource/stats/generalize.html#viacl
http://www.sportsci.org/resource/stats/stdev.html
http://www.sportsci.org/resource/stats/relycalc.html
http://www.sportsci.org/resource/stats/relycalc.html#excel
http://www.sportsci.org/resource/stats/relycalc.html
http://www.sportsci.org/resource/stats/modelsdetail.html#hetero
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some kind of average typical error that will be too high for some subjects and too low for others. To get rid 

of heteroscedasticity, you have to either do separate analyses for subgroups of subjects with similar typical 

errors (e.g., males and females), or find a way to transform the variable to make the typical error for the 

transformed variable uniform. Log transformation often makes the error uniform when larger values of the 

original variable have more error. You should check for non-uniform error whenever you calculate reliability 

statistics. I explain how on the calculations page. 

Another form of within-subject variation promoted by some statisticians is reliability limits of agreement, 

which represent the 95% likely range for the difference between a subject's scores in two tests. For 

example, if the limits of agreement for a measurement of weight are ±2.5 kg, there's a 95% chance that the 

difference between a subject's scores for two weighings will be within -2.5 kg and +2.5 kg (after any 

learning effect or other systematic change in the mean on retest has been taken out of the picture). 

Equivalently, if you reweighed a large number of subjects, 95% of them would have difference scores within 

-2.5 kg and +2.5 kg. The range defined by the limits of agreement is regarded as a kind of reference 

range for changes between pairs of measurements: in our example, any change between -2.5 and +2.5 kg 

is deemed to be normal variation; anything else is unusual enough to be indicative that a real change has 

occurred. 

For a normally distributed variable, the limits of agreement are ±2.77 times the typical error. The 2.77 

comes from the standard deviation of the difference score (which is root2 times the typical error) multiplied 

by 1.96 (which includes 95% of observations of the difference score). So even though they are very 

different in definition, the fact that the typical error and limits of agreement are proportional makes their 

properties similar. Which is the better measure of reliability? I prefer typical error, because limits of 

agreement are harder to understand, they are harder to apply to the error of a single measurement, they 

are too large as a reference range for making a decision about a change in a subject's measurements 

(more about this issue on the next page), and they have to be converted into a typical error for most 

statistical calculations. 

 Retest Correlation

 
When you plot test and retest values, it's obvious that the closer the values are to a straight line, the higher 

the reliability. A retest correlation is therefore one way to quantify reliability: a correlation of 1.00 

represents perfect agreement between tests, whereas 0.00 represents no agreement whatever. In our 

example the correlation is 0.95, which represents very high reliability. 

OK, do we need the correlation coefficient? Why can't we just use the typical error? Hmmm... Well, the two 

are certainly related, because a small typical error usually means a high correlation. But they also measure 

different things. The typical error is a pure measure of variation within each subject, whereas the correlation 

coefficient tells us something about the reproducibility of the rank order of subjects on retest. A high 

correlation means the subjects will mostly keep their same places between tests, whereas a low correlation 

means they will be all mixed up. Even a correlation as high as 0.95 implies some loss of order, as you can 

see in our example in the columns of weights. I've rank-ordered the weights in the first column (Test 1) to 

show you that the ordering is degraded somewhat in the second column (Test 2). It might help you 

understand if you think about the possibility of negative correlations for reliability. Such things exist and are 

even worse than zero, because they imply that the rank order of subjects in the first test tends to 

be reversed in the second test. 

There is another important difference between typical error and retest correlation. Typical error can be 

estimated from a sample of subjects that is not particularly representative of the population you want to 

study. For example, the sample can be homogeneous relative to the population, or you can do multiple 

retests on just a few subjects. Either way, you can usually assume the resulting typical error applies to any 

subject in the population. But the retest correlation is sensitive to the nature of the sample used to estimate 

it. For example, if the sample is homogeneous, the correlation will be low. Or if multiple tests are performed 

on only a few subjects, the resulting estimate of correlation will be "noisy" (take my word for it). So 

whenever you interpret a correlation, remember to take into consideration the sample that was used to 

calculate it. 

http://www.sportsci.org/resource/stats/relycalc.html#nonuniform
http://www.sportsci.org/resource/stats/relyappl.html#monitor
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How do you calculate the retest correlation? The usual Pearson correlation coefficient is acceptable for two 

tests, but it overestimates the true correlation for small sample sizes (less than ~15). A better measure of 

the retest correlation is the intraclass correlation coefficientor ICC. It does not have this bias with small 

samples, and it also has the advantage that it can be calculated as a single correlation when you have 

more than two tests. In fact, the intraclass correlation is equivalent to the appropriate average of the 

Pearson correlations between all pairs of tests. You use analysis of variance or repeated measures to do 

the calculation, as detailed in reliability calculations. 

Pearson and intraclass correlations are unaffected by any shift in mean on retest. So, in our example, the 

fact that the weights are down a bit in the second test has no effect on the correlation coefficient. And that's 

the way it should be. The question of any change in the mean value on retest should be kept separate. 

By the way, I don't know what intraclass means. I presume the intra refers to the way typical error enters 

into the calculation of the correlation. 

 Kappa Coefficient: Reliability of Nominal Variables

 
Reliability can also be defined for nominal variables, to represent the consistency with which something is 

classified on several occasions. For example, how consistent are subjects in their choice of favorite sport, 

or in agreeing or disagreeing with a statement? The best measure is something called the kappa 

coefficient. It is analogous to a correlation coefficient and has the same range of values (-1 to +1). As far 

as I know, there is nothing analogous to typical error or change in the mean for nominal variables. 

  Alpha Reliability

 
Sport psychologists often produce a variable by effectively averaging the scores of two or more items from 

a multi-item questionnaire or inventory. The alpha reliability of the variable is derived by assuming each 

item represents a retest of a single item. For example, if there are five items, it's as if the five scores are the 

retest scores for one item. But the reliability is calculated in such a way that it represents the reliability of 

the mean of the items, not the reliability of any single item. So, for example, the alpha reliability of 10 items 

would be higher than that of 5 similar items. 

Alpha reliability should be regarded as a measure of internal consistency of the mean of the items at the 

time of administration of the questionnaire. It is not test-retest reliability. For that, the questionnaire has to 

be administered on two or more occasions. 

 APPLICATIONS OF RELIABILITY

 
The applications are: estimating sample size for an experiment, estimating the extent of individual 

responses to a treatment in an experiment, assessing an individual with a single measurement or repeated 

measurements (with a spreadsheet for doing the calculations), andcomparing precision of 

measures provided by tests, items of equipment, or operators of the equipment. These applications impact 

on the design of reliability studies that give you estimates of reliability you want to use, so information 

about design is scattered through this page. There's also a section on sample size for reliability studies at 

the end. Follow this link for a Powerpoint presentation on use of reliability to assess an individual, to 

estimate sample size in experiments, and to estimate individual responses to a treatment. 

 

 Sample Size for an Experiment 

In an experiment, you measure something on your subjects (e.g., performance), do something to them, 

then measure them again to see the effect of what you've done. The effect shows up as a change in mean 

performance between the two measurements. The more reliable your measure of performance, the more 

precision there will be in the change in mean performance, so the less subjects you will need. To get an 

estimate of the number of subjects, you have to include a value for the smallest worthwhile change that 

http://www.sportsci.org/resource/stats/relycalc.html
http://www.sportsci.org/resource/stats/relyappl.html#samplesize
http://www.sportsci.org/resource/stats/relyappl.html#individ
http://www.sportsci.org/resource/stats/relyappl.html#individ
http://www.sportsci.org/resource/stats/relyappl.html#assess
http://www.sportsci.org/resource/stats/relyappl.html#excel
http://www.sportsci.org/resource/stats/relyappl.html#compare
http://www.sportsci.org/resource/stats/relyappl.html#compare
http://www.sportsci.org/resource/stats/relyappl.html#samplerely
http://www.sportsci.org/resource/stats/precision.html#relyppt
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could result from your treatment. After all, if you see such a change in your subjects, you should be able to 

conclude that a change of something like that magnitude really does happen with the treatment. I've 

devised various formulae to work out the sample size that gives adequate precision the smallest change, 

using either retest correlation or typical error as the measure of reliability. When I first got into this game, I 

favored the retest correlation. These days I'm all for typical error. Here's a summary emphasizing the 

crucial role of typical error, followed by an explanation of each point: 

1. Find the noise in your measure--the value of the typical error from a reliability study with individuals 

and a time frame similar to those of your intended study. 

2. Decide on the smallest signal--the smallest clinically or practically worthwhile change in the 

measure for your study group. 

3. If the noise is less than the smallest signal, you can use the measure to make precise estimates of 

any experimental effects with a single test and retest and a sample of modest size. 

4. If the noise is greater than the smallest signal, the measure will provide acceptable precision for 

effects smaller than the noise only with more testing (more subjects, or more pre and post tests). 

The important point in Point 1 is to make sure the conditions and subjects in the reliability study are 

similar to those in the intended experiment. In particular, the time between consecutive pairs of trials in 

the reliability study should be similar to the time between the pre and post tests in the experiment. For 

example, if you intend to look at the effects of a two-month nutritional intervention on body fat, the reliability 

of body fat measurements with two months between measurements will give you a more realistic idea of 

sample size than the higher reliability you are likely to see if only two hours separate the measurements. 

With two hours between measurements, the typical error is likely to arise only from technological error: 

error arising from the apparatus or the operator of the apparatus. With two months between measurements, 

some subjects will get fatter and some will get thinner, so the typical error will include also biological 

"error": true variation within the subjects. It's against this background of biological variation and 

technological error that you measure changes in body fat resulting from your intervention. 

Researchers don't devote enough attention to Point 2. I go into this point in detail on several pages: a scale 

of magnitudes, and formulae for sample size. In summary, for most studies of health, injury, and fitness of 

normal folks, the smallest effect is 0.2 of the between-subject standard deviation. For studies of athletic 

performance, the smallest effect is 0.3-0.5 of the typical variation (standard deviation) that a top athlete 

displays from competition to competition. 

If only all our measures were as good as those in Point 3! The "modest" sample size based on adequate 

confidence limits is ~8s2/d2 for a crossover, or 4x as many when there is a control group, where s is the 

noise (typical error or within-subject standard deviation) and d is the signal (smallest worthwhile change). 

So, when the noise in the measure is negligible compared with the smallest effect (s<<d), you can in theory 

do the experiment with one subject in a crossover and two in a controlled trial (one each in the treatment 

and control groups). But you should still use ~10 subjects, to be confident that the subjects in your study 

are representative of a wider population. 

Most often the noise is greater than the smallest signal, as in Point 4. The noise comes either from 

technological error, or from random real changes in the subjects over the time frame of the study, or 

from individual responses to the treatment. Whatever the source of the noise, acceptable precision for the 

smallest effect demands either a large sample size (>>8 in a crossover; >>32 in a controlled trial) or several 

pre and post tests on each subject. Extra pre tests and post tests effectively reduce the noise in the 

measure, because you analyze the change between the average of the pre tests and the average of the 

post tests. It's the only option when your pool of subjects is limited. 

It's certainly a good idea to do a reliability study before an experiment, either to estimate sample size or to 

make sure you've got your techniques right. But if you are reasonably confident about the techniques, I 

advocate getting stuck straight into the experiment. As I explain insample size on the fly, if your treatment 

turns out to have a big effect, you needn't have done all the extra testing to get adequate precision. 

http://www.sportsci.org/resource/stats/ssdetermine.html#long
http://www.sportsci.org/resource/stats/effectmag.html
http://www.sportsci.org/resource/stats/effectmag.html
http://www.sportsci.org/resource/stats/ssdetermine.html#long
http://www.sportsci.org/resource/stats/sscl.html
http://www.sportsci.org/resource/stats/sscl.html
http://www.sportsci.org/resource/stats/relyappl.html#individ
http://www.sportsci.org/resource/stats/ssonthefly.html
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 Individual Responses to a Treatment

 
When the response to an experimental treatment differs between subjects, we say that there are individual 

responses to the treatment, or that there are individual differences in the response. For example, a 

treatment might increase the power output of athletes by a mean of 3%, but the variation in the true 

enhancement between individual athletes might be a standard deviation of 2.5%. In this example, most 

athletes would show positive responses to the treatment, some athletes would show little or no response, 

and some would even respond negatively. Note that this figure of 2.5% is not simply the standard deviation 

of the difference scores, which would include variation due to typical error. When I refer to individual 

responses, I mean variation in the true effect free of typical error. Although the primary aim in an 

experiment is to estimate the mean enhancement, it is obviously important to know whether the individual 

responses are substantial. Analysis of reliability offers one approach to this problem. 

When individual responses are present, subjects show a greater variability in the post-pre difference score. 

Analysis of the experimental group as a reliability study therefore yields an estimate of the typical error 

inflated by individual responses. Comparison of this inflated typical error with the typical error of the control 

group or with the typical error from a reliability study allows you to estimate the magnitude of the individual 

responses as a standard deviation (2.5% in the above example). If the experiment consists of a pre-test, an 

intervention, and a post-test, the estimate is readily derived from basic statistical principles as root(2s2
expt - 

2s2), where sexpt is the inflated typical error in the experimental group, and s is the typical error in the control 

group or in a reliability study. For example, if the typical error in the experimental group is 2%, and the 

typical error in the control group or in a reliability study is 1%, the standard deviation of the individual 

responses is 2.5% (= root6). 

If you use the typical error from a reliability study to estimate the individual responses in your experiment, 

make sure the reliability study has a time frame and subjects similar to those in your experiment. And if 

your experiment is a crossover, there is no control group, so youhave to use the typical error from a 

reliability study. Alternatively, use a complex crossover in which your subjects do several tests for each of 

the treatments. 

You can also used mixed modeling to estimate individual responses. It's awfully complicated, but the extra 

effort is worth it, because you also get confidence limits for the estimate. When individual responses are 

present, the obvious next step is to identify the subject characteristics that predict the individual responses. 

The appropriate analysis is repeated-measures analysis of covariance, with the likely subject 

characteristics (e.g., age, sex, fitness, genotype) as covariates. Follow this link for more. 

 

 Assessing an Individual

 
Whenever you take a measurement to assess someone's fitness, fatness, or other characteristics, your 

measurement is contaminated by "noise"--the typical error. Sometimes the noise is small enough to 

neglect, as in measurement of body mass with any reasonable set of scales. But if the noise is not 

negligible, you should be up front about your uncertainty when you report the measurement to your patient 

or client. There are a couple of ways to express this uncertainty. I'll explain in detail shortly. First, here are 

the main points. Typical error and the smallest clinically/practically worthwhile/important change have the 

same key roles here as they do in sample-size estimation for experimental studies (see above): 

 The typical error of measurement is the key to making sense of a single measurement or a change 

in a measurement. 

o The typical error needs to come from a short-term reliability study of individuals similar to the 

one you are assessing. 
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 For a single measurement, the typical error really is the typical amount by which any single 

observed value is different from the true value. 

 For a change between two measurements, take into account not only the typical error (the 

"noise") but also the smallest clinically important change (the smallest "signal"). 

o If the noise is much less than the smallest signal, your measure is precise. Trust any change 

you see between a single test and retest. 

o If the noise is much greater than the smallest signal, your measure is too noisy to be useful. 

Find a less noisy test. 

o If the noise is about the same as the smallest signal, your measure is useful, but take into 

account the uncertainty in your measurements by using likelihoods or likely limits. You 

should also try to take multiple measurements and either average them to reduce the noise 

or look for a trend over time between the tests. 

Typical Error for Assessing Individuals 

When you wanted the sample size for an experiment, it was important to use an estimate of reliability from 

a reliability study with the same time between trials as in the experiment. But for a single measurement or a 

change in a measurement on an individual, you need an estimate of reliability with the minimum of 

biological variation. The period between measurements in the reliability study therefore needs to be brief. 

By brief I mean a period over which you wouldn't expect any real change in the variable you are assessing. 

For retests of skinfolds, brief could be an hour--anything longer and changes in the subject's posture or 

state of hydration might affect the measurements. For retests of physical performance, leave just enough 

time for all your subjects to recover from the fatigue of the previous test. 

If there is a systematic change in the mean in the reliability study, do you take that into account in your 

subsequent assessments? In general, no, because changes in the mean in the reliability study will usually 

be due to changes within the subjects. 

In what follows, I often refer to the true value of a subject's measurement. By true I mean the value free of 

typical error, which is the value you would get if you took hundreds of measurements on the subject and 

averaged them. There might still be a systematic error in this "true" measurement, but you would need to 

do a validity study to sort that out. That kind of systematic error is less likely to be a problem when you are 

interested in a change or difference between measurements, because the error will tend to disappear when 

you subtract one measurement from another. 

A Single Measurement 

You measure a gymnast and find a sum of seven skinfolds of 45.2 mm. The true value won't 

be exactly 45.2 mm, so one way to take measurement error into account is to specify a likely range or 

limits for the true value: a range within which the true value is likely to fall (for example, 42.2 to 48.2 

mm). Likely can be anything we like. In research projects we usually opt for 95% likely, and later on I 

devote a whole page to the concept of confidence limits for generalizing from a sample to a population. The 

meaning is much the same here; the only difference is that we're talking about an individual rather than an 

average effect in the population. The 95% confidence or likely limits for an individual's true value have a 

95% chance of enclosing that individual's true value. Or you can say the odds are 19 to 1 that the subject's 

true value will be within the range. You get 95% limits by multiplying the typical error by about ±2.0. Let's 

say your typical error is 1.5 mm for the sum of seven skinfolds on a sample of female gymnasts similar to 

your subject. The true value of the skinfold sum is therefore 95% likely to be within 45.2 ± 2.0x1.5, or 42.2 

to 48.2 mm. 

Do you tell the gymnast the 95% likely range? No, probably not. A certainty of 95% may be OK for 

research, but it's too much for assessing an individual. The range represented by ±1.0x the typical error--a 

68% range, or 2 to 1 odds of enclosing the true value--is probably the best default way to convey your 

uncertainty about the true value. It's certainly the easiest to use! You just say to the gymnast, "the odds are 

2 to 1 that your real skinfold thickness is between 45.2 ± 1.5, or 43.7 to 46.7 mm". If you are feeling more 

cautious, say instead "the odds are 9 to 1 that your real skinfold thickness is between 45.2 ± 2.5, or 42.7 to 
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47.7 mm." The table below summarizes the likely ranges, the odds, and the factors to multiply by your 

typical error. You can also use a spreadsheet for precision of a subject's true value. 

Factors for generating likely (confidence) limits for the true value of a single measurement or 

of a difference or change in a measurement. "Likely" is defined by several values of 

probability or odds. 

Likelihood that the limits will contain the true 

value 

Multiply typical error by ± this factor to get the 

limits for… 

Probability Odds a single measurement 

a change in a 

measurement 

52% 1 to 1 0.71 1.00 

68% 2 to 1 1.00 1.41 

80% 4 to 1 1.28 1.81 

90% 9 to 1 1.65 2.33 

95% 19 to 1 1.96 2.77a 

aThis factor generates the 95% limits of agreement. 

 

When the typical error is given as a percent, an approach similar to the above is usually accurate enough. 

For example, if the typical percent error is 3.0%, the 68% likely range of the true value of a single 

measurement is ±1.0x3.0 = ±3.0% of the observed value. If you get percent limits of 10% or more, this 

method become less accurate, so you have to use log transformation. But don't worry, it's all taken care of 

in the spreadsheet. 

The factors shown in the table are values of the t statistic for the given probability. The factors get a bit 

larger for typical errors based on smaller sample sizes, reflecting more uncertainty about the magnitude of 

the typical error from smaller samples. For 20 subjects measured twice, the factors are accurate enough. If 

you assess subjects frequently, you should estimate the typical error of your measurement from a larger 

amount of retesting--otherwise you're likely to mislead all your subjects about the accuracy of their 

assessments through using an estimate of typical error that is much higher or much lower than the true 

typical error. See below for more on this issue. 

The other way to take error into account when you assess a subject is to specify the likelihood (probability 

or odds) that the subject's true value is greater than (or less than) a reference value. This method is better 

for changes in a measurement between tests, but I'll illustrate it here with a simple example. If a skinfold 

thickness of 42 mm or more had some special significance, you could say to the gymnast "there's a 98% 

chance that your skinfolds are thicker than 42 mm", or "odds are 50 to 1 that your skinfolds are thicker than 

42 mm". The probability and odds come straight from the first example shown on the spreadsheet. 

Monitoring for a Change between Measurements 

The uncertainty in a change between measurements is more than in a single measurement, because a 

change involves two measurements, each of which has error. But you double the variance, not the typical 

error, so the typical error in a change score is root2 times the typical error. The likely limits for a change in a 

measurement are therefore root2 times the limits for a single measurement. See the table above for the 

factors corresponding to the different likelihoods. I have incorporated these factors into the spreadsheet. 

For an example, let's measure our gymnast again, one month later. Her skinfolds were 45.2, but now 

they're 48.5 mm. The coach wants to know if she is really putting on fat. What do you tell the coach? 
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First, let's try likely limits. As before, let's assume the typical error is 1.5 mm. The easiest likely limits to 

calculate for a change score are the 50% limits: simply plus or minus the typical error. The observed 

change is 3.3 mm, so you'd say there's a 50% chance, or odds of 1:1, that the true change is between 3.3-

1.5 and 3.3+1.5, or 1.8 and 4.8 mm. If we opt for a range that has odds of 4:1 of including the true change 

(an 80% likely range), the limits are 3.3 ±1.81x1.5, or 0.6 and 6.0 mm. And so on. Fine, but what percent 

limits should you use in these practical situations, and how do you use them to decide whether a real 

change has occurred? Rather than try to answer these hard questions, I will take you through a better 

method of assessing change. 

The better method is based on calculating the likelihood that the true change is bigger than a reference 

value. For the reference value, you choose the smallest clinically important or worthwhile change. In 

the above example (observed increase of 3.3 mm, typical error of 1.5 mm), let's say that an increase in 

skinfolds of 2.0 mm is the smallest change worth worrying about. Obviously, the gymnast's observed 

change of 3.3 mm is already more than 2 mm, but how likely is it that the true change is more than 2 mm? 

From the spreadsheet, the likelihood is 73%, or odds of 3 to 1. We should also work out the likelihood that 

the gymnast's skinfolds have actually decreased (even though we observed an increase). The smallest 

worthwhile decrease would be 2.0. From the spreadsheet, the chance that the decrease has been greater 

than 2.0 (< -2.0) is only 1%, or odds of 1:136. Your advice to the coach? "Odds are 3 to 1 there's been a 

substantial increase in skinfold thickness, and there's a negligible chance that her skinfolds have 

decreased. You can assume she's fatter." 

This example is reasonably clear cut, mainly because the typical error or noise (1.5 mm) is somewhat less 

than the smallest important change (2 mm). Basically, our measure is precise relative to any changes that 

matter, so any changes we observe with such a measure are trustworthy. But what if the noise is about 

equal to the smallest signal? The Powerpoint presentation has a couple of examples for an arbitrary 

variable with a typical error of 1.0 and a smallest important effect of 0.9. If the observed effect is 1.5, 

chances are 66% the true effect is clinically positive, 29% the true effect is clinically trivial, and 5% the true 

effect is clinically negative. It's reasonable to conclude the true effect is (probably) clinically positive. If the 

observed effect is a clinically trivial 0.5, the likelihood that the effect really is trivial is only 45%, whereas 

there's a 55% chance something really worthwhile has happened (39% positive, 16% negative). You can 

conclude that maybe nothing has happened, but acting on it would depend on the relative costs and 

benefits of taking action or doing nothing. 

When the typical error is much greater than the smallest worthwhile change, we will often observe clinically 

worthwhile changes that are due to error of measurement rather than to any real change. The measure is 

therefore too noisy to be useful. The chances that real positive or negative changes have occurred (using 

the spreadsheet) confirm this state of affairs. For example, if the typical error is three times the smallest 

clinically worthwhile change, and we observe the smallest worthwhile change, the chance of a real positive 

change having occurred is 50%, or odds of 1:1, but the chance of a real negative change having occurred 

is 32%, or odds of 1:2.. 

Noisy measures can still be useful for characterizing worthwhile changes smaller than the noise, but we 

have to reduce the noise by performing multiple pre and post tests; we then either compare means of the 

pre and post tests or look for a trend across all the tests. On the other hand, observed 

changes greater than the typical error may still be trustworthy, if you expected them. In the present 

example, even a change equal to the typical error (three times the smallest worthwhile change) has 

likelihoods of a true positive value (68% or 2:1) or a true negative value (17% or 1:5) that would satisfy a 

practitioner who was expecting such a large change in the subject. But if true changes of such large 

magnitude are unlikely, we should be prepared to discount large observed changes as measurement error. 

By basing our assessment partly on the change we think we're likely to see, we are assessing the individual 

in a Bayesian fashion. Bayesian analysis is a quantitative method for taking into account our prior belief 

about something, in this case the subject's true value or change in the true value. Experienced clinicians 

and practitioners adopt this approach qualitatively when they reject unlikely test results. Bayesian analysis 

ostensibly allows this kind of decision-making to be quantitative. But how can we quantify strength of a 

belief? For example, if we believe a change couldn't be outside ±3, where does the ±3 come from, and 
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what likely limits define couldn't? 80%, 90%, 95%, 99%... ? At the moment I can't see a satisfactory answer 

to these questions, but whatever, I have included Bayesian adjustment for the likelihoods and likely limits in 

the spreadsheet. It took me so long to do, I'd hate to think the time was wasted! 

Putting all these examples together with lots of deep thought, I came up with the bullet points at the start of 

this section on assessing an individual. Go back there now, read them again, and make sure you 

understand and learn them. 

Some researchers have tried to use limits of agreement to make decisions about change in an individual. 

According to these researchers, you can trust an observed change only if it's greater than the limits of 

agreement. But limits of agreement are so big (2.8 typical errors) that clinically important trustworthy 

changes often fall within them. You end up having to ignore changes in your subjects that in some settings 

might be life-threatening! No, we must abandon limits of agreement as a clinical tool. 

Comparing Individuals 

All the above calculations for the change in a single subject's measurements also apply to making 

decisions about the difference between two subjects. In the above example, the second measurement of 

skinfold thickness (48.5 mm) could have been a measurement of skinfold thickness of another subject. 

Your conclusion would be that the second subject has skinfolds 3.3 mm thicker than the first, with odds of 4 

to 1 that the real difference in skinfold thickness is between 0.6 and 6.0 mm. Better still, you could say that 

the odds of a real difference in skinfold thickness (more than 2 mm) are 3 to 1. 

Spreadsheet for Assessing an Individual 

In this spreadsheet I use the typical error of measurement and a subject's observed value to estimate likely 

limits for the subject's true value and to estimate the likelihood that the subject's true value is greater than a 

reference value. I do the same for the change between two observed values. I also include likelihoods and 

likely limits for the estimate of a true criterion value derived from a validity study. Finally, I've gone to a lot of 

probably pointless trouble to add Bayesian adjustments in a second spreadsheet (part of the same file). 

Precision of the estimate of a subject's value: Excel latest Help!  

 Comparing Reliability of Measures

 
Choosing between two items of laboratory equipment, choosing a good performance test or test protocol, 

deciding whether an anthropometrist has a reached a certain level of skill... these are all applications where 

you need to compare reliability of the measures produced by the equipment, the performance tests, or the 

anthropometrist. Recall that we have three main measures of reliability: change in the mean, typical error, 

and retest correlation. Which of these should you use when comparing the reliability of items of equipment, 

tests, anthropometrists, and so on? 

Systematic changes in the mean can be an issue when comparing measures: in general, the bigger the 

changes between trials, the less desirable the measure. But comparing the typical errors is much more 

important, because the equipment, protocol, or anthropometrist that produces a measure with less typical 

error is providing a more accurate measure. Retest correlation contains the typical error, but the fact that it 

also contains the between-subject standard deviation makes the comparison of correlations either noisy 

(when there are different subjects in the two reliability studies) or computationally difficult (when the same 

subjects are in both studies). Besides, there is no point in comparing retest correlations, if you have already 

compared typical errors. I therefore will not deal with comparison of retest correlations. 

When setting up a study to compare typical errors, keep in mind that the typical error always consists of 

biological variation arising from the subjects and technological variation arising from the items. The aim is 

usually to compare the technological variation, so try to make the biological variation as small as possible. 

For example, when comparing the reliability of two anthropometrists, you would get them to measure the 

same subjects within an hour, to avoid any substantial biological variation. Similarly, when comparing the 

reliability of power provided by two ergometers, use athletes as subjects, because they are usually more 

reliable than non-athletes. 
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Comparing the reliability of two items (protocols, equipment, or operators) is straightforward 

when different subjects are used to get the reliability for each item. Confidence limits for the ratio of the 

typical errors between corresponding trials in the two groups can be derived from an F ratio. Use Item 4 in 

the spreadsheet for confidence limits for this purpose. To compare changes in the mean between 

corresponding pairs of trials for the two measures, you will need to use an unpaired t test of the change 

scores. Using the same subjects has more power but requires analysis by an expert. (The analysis needs 

a mixed model, in which the equipment is a fixed effect, trial number is a fixed effect, subjects is a random 

effect, and a dummy random variable is introduced to account for the extra within-subject variance 

associated with measures on one of the items. Confidence limits for the extra variance tell you how 

different the typical errors could be. The model also provides an estimate of the difference in changes in the 

mean between the items, or you can use a paired t test.) 

In the previous section I said that the 95% likely range is too conservative for assessing individuals, and I 

also said that it's difficult to decide on what percent range to use. The same argument and difficulty applies 

for comparison of typical errors in a clinical or field setting. It won't hurt to calculate, say, the 80% likely 

range, but I think clinicians and practitioners (and you!) will have a better chance of understanding what I'm 

getting at if you use likelihood that one typical error is substantially smaller or larger than the other. You 

compare typical errors by dividing one by the other, to get a ratio. A ratio of 1.1 or maybe 1.2 is my best 

guess at the minimum worthwhile difference in reliabilities, so you calculate the likelihood (as a probability 

or odds ratio) that one measure has a typical error at least 1.1x (or 1.2x) bigger than the other. It's all on 

the spreadsheet for confidence limits. 

 Sample Size for Reliability Studies

 
How many subjects and retests do you need in a reliability study? That depends on how precise you need 

to be with your estimate of reliability of the measure. That, in turn, depends on how reliable the measure 

itself turns out to be: the higher the reliability, the less precise the estimate of reliability needs to be, so the 

fewer the number of subjects or retests you will need. Let me explain this principle with an example of 

assessment of individuals. Suppose the variable in question is some measure of human performance. 

Suppose the smallest change in performance that matters to subjects is 2.0 units (seconds, cm, kg, %, or 

anything you like). If your measure of performance turns out to have a typical error of 0.2 units in a 

reliability study, a 50% uncertainty in this estimate (that is, a factor of 1.5, or 0.2/1.5 to 0.2x1.5, or 0.1 to 0.3 

units) makes little difference to the precision of estimates of small changes in performance (~2.0 units). I 

mean, it doesn't matter too much if an estimate of a change in performance of 2.0 units is accurate to ±0.1 

or ±0.3 units. But if the typical error turns out to be 3.0 units (that is, similar to the smallest change in 

performance that matters to subjects), a 50% uncertainty in the typical error (2.0 to 4.5 units) makes a big 

difference to the precision of estimates: 2.0 ± 2.0 units isn't very good, but it's a lot better than 2.0 ± 4.5 

units. In other words, when the typical error is similar in magnitude to what matters for your subjects, your 

uncertainty in the typical error needs to be a lot smaller than 50%, and that means more subjects in the 

reliability study. 

Phew! Let's see what sample size we'll need for the estimate of reliability for each application of reliability. 

The applications are: estimating sample size for an experiment, comparing reliability of different measures, 

estimating individual responses in an experiment, and assessing an individual. We'll assume modest 

reliability: a typical error of the same order of magnitude as the smallest change that matters to subjects. 

We'll find that samples of 50 subjects tested three times gives reasonable precision for the estimate of the 

typical error. That's assuming you can combine the data for all three trials to estimate the typical error. If 

there is a substantial learning or practice effect on the typical error between the first and second trials, you 

will need another trial--four in total--so you can combine the last three. 

Sample Size for Reliability Studies... 

...for Estimation of Sample Size for an Experiment 

When you use a value of the typical error to estimate the sample size for an experiment, uncertainty in the 

typical error translates into uncertainty in the sample size you will need for the experiment. Sample size for 

an experiment is inversely proportional to the square of the typical error, so uncertainty in the typical error 
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balloons into much bigger uncertainty in sample size for an experiment. You can check the effect of number 

of subjects and retests on precision of the typical error by plugging numbers into the appropriate cells of 

Item 3 on thespreadsheet for confidence limits. Give the typical error a value of 1.0 then pretend you got 

this value from a reliability study of either 10 subjects tested twice (= 9 degrees of freedom). You will find 

that the 95% confidence limits for the true typical error are 0.69 to 1.83; square these and you get the 

uncertainty in sample size as factors of 0.47 to 3.33. In other words, if you predicted a sample size of, say, 

40 subjects in the experiment on the basis of a typical error of 1.0, what you might really need is anything 

from 19 to 133. Well, that's far too wide a range! Let's try a reliability study with 50 subjects tested three 

times. The range in sample size becomes 31 to 54, which is still quite a lot of uncertainty, but I guess it's 

OK. 

This calculation is based on 95% limits of uncertainty for the typical error, which may be a bit too 

conservative for the likely limits of the sample size in the experiment. If instead we use 67% likely limits, we 

end up with something more like the typical variation in the estimate of sample size based on the reliability 

study. For a reliability study of 10 subjects tested twice, the typical variation in our estimate of sample size 

would be, for example, 28 to 72. Still too wide. Test them three times and you get 30 to 59. That's better, 

but the required sample size could easily be outside these 67% limits. 

So what's my advice? If you have the time, money, and subjects for a large reliability study, go for it. 

Otherwise you're better off devoting your resources to the experiment by using sample size on the fly: stop 

testing subjects when you have adequate precision for the effect. 

Sample Size for Reliability Studies... 

...for Comparing Reliability of Measures 

When you want to compare the reliability of two measures, the worst-case scenario is that you observe 

similar reliabilities for the two measures. (You might see why this is worst-case in a minute.) In this 

scenario, you want to conclude that there are no substantial differences between the measures. The 

easiest way to compare typical errors is compute their ratio and its confidence limits. Therefore, you will be 

able to conclude there is no substantial difference if the upper limit of the ratio is only a little greater than 

1.00 and the lower limit is only a little less than 1.00. Let's generate some confidence limits for the ratio 

using Item 4 (ratio of standard deviations) in the spreadsheet for confidence limits. Make the two typical 

errors the same (e.g. 3.0), and pretend each has come from a study with 100 degrees of freedom (51 

subjects, 3 trials). You'll see that the 95% confidence limits for the ratio of the typical errors are 0.82 to 

1.22. In other words, the true values of the typical errors could be about 20% different from each other. 

That amount of uncertainty is marginal, in my view, but again, 95% confidence limits are probably too 

stringent in a real-life situation where you are choosing between two items of equipment. The 80% 

confidence limits for the ratio are 0.88 to 1.14, which make me feel more comfortable about concluding that 

there is no real difference in the reliability of the two measures. I feel even more comfortable looking at the 

likelihood the the true value of the ratio is greater than 1.2: it's only 3%, or odds of 1 in 28. There is no 

substantial difference in the reliability of these two measures, if by "substantial" we mean different by a 

factor of 1.2 or more. 

Things aren't so bad when you observe a big difference between the typical errors of the measures, 

because you will need less subjects to conclude that one really is substantially worse (larger) than the 

other. Try it for yourself with the spreadsheet: make the observed typical errors 2.0 and 3.0, give them both 

only 20 degrees of freedom, make the reference ratio 1.15, say, then look at the likelihood that one typical 

error is substantially greater than the other: 88%, or odds of 7:1. Not much doubt about it--they're different! 

Finally, if you can use the same subjects for both reliability studies, you're bound to get better precision for 

the ratio and therefore a reduction in sample size required to make firm conclusions about the relative 

magnitudes of the typical errors. Sorry, I haven't worked out how big the reduction is yet. You can't do it 

with the spreadsheet--you have to use mixed modeling or bootstrapping. 

Sample Size for Reliability Studies... 

...for Estimating Individual Responses 

Estimation of individual responses to a treatment boils down to a comparison of the typical errors of two 
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groups (the treatment and control groups), so the sample size must be the same as for a comparison of the 

reliability of two measures.. 

Sample Size for Reliability Studies... 

...for Assessing an Individual 

At first glance it appears you can use as few as 20 subjects and two trials to estimate a typical error without 

substantially degrading the precision of an individual assessment. Check the spreadsheet for precision of a 

subject's true value to see what I mean. In Item 1, put in an observed value of 50, a typical error of 2.0 from 

two trials, and compare the likely limits for the subject's true value when the typical error is based on 20 

subjects vs 2000 subjects. With 20 subjects the 80% likely limits for the subject's true value are 47.3 to 

52.7, or 50 ± 2.7; for 2000 subjects the limits are 47.4 to 52.6, or 50 ± 2.6. In other words, there's a 

negligible increase in the likely limits (= loss of precision) for the smaller sample size. But wait a minute... 

the typical error based on a sample of 20 subjects and two trials is really noisy. Check the spreadsheet for 

confidence limits and you'll see, for example, that a typical error of 2.0 has 95% likely limits of 1.5 to 2.9. 

That's a big range in precision. What gives? 

Well, 20 subjects and two tests definitely give you almost as much accuracy as a zillion subjects and tests, 

and that's fair enough if you are assessing only one individual. If another clinician tested 20 subjects twice, 

then assessed another individual, it would be the same story. But there's likely to be a big difference 

between your typical errors; for example, yours might be 2.5, and the other clinician's might be 1.7. Your 

assessments of, say, 80% likely limits based on a typical error of 2.5 would really be ~90% likely limits, 

while the other person's 80% likely limits based on a typical error of 1.7 would be ~70% likely limits. You're 

both giving misleading assessments, and so would many other clinicians who tested only 20 subjects twice. 

Yet averaged over all clinicians and all subjects, the true values of 80% of subjects would be within the 

likely limits that each clinician tells each subject. The trouble is that your assessments will 

be consistently misleading, if you are unlucky enough to get a typical error of 2.5 or 1.7 with your batch of 

20 subjects. A typical error based on 50 subjects and three tests would usually be in the range of 1.8 to 2.2, 

and if you used 2.2 in your assessments, your 80% likely limits would be less than 85% limits in reality, 

which seems OK to me. But I'm still thinking about it... 

 CALCULATIONS FOR RELIABILITY

 
Make sure you understand the page on reliability before tackling this page. I explain here how to analyze 

data for two trials using simple but effective methods. To combine three or more trials you need more 

sophisticated procedures, such as analysis of variance or modeling variances. I go into heaps of detail 

about checking for non-uniform error in your data, and I have a few words on biased estimates of reliability. 

Finally, you can download a spreadsheet for calculating reliability between consecutive pairs of trials, 

complete with raw and percent estimates and confidence limits for typical error, change in mean, and retest 

correlation. The spreadsheet has data adapted from real measurements of skinfold thickness of athletes. 

 

 Two Trials

 
Analyzing two trials is straightforward. All the necessary calculations are included in the spreadsheet for 

reliability. When you have three or more trials, I strongly recommend that you first do separate analyses for 

consecutive pairs of trials (Trial1 with Trial2, Trial2 with Trial3, Trial3 with Trial4, etc.). That way you will see 

if there are any substantial differences in the typical error or change in the mean between pairs of trials. 

Such differences are indicative of learning or practice effects. If there is no substantial change in the typical 

error between three or more consecutive trials, analyze those trials all together to get greater precision for 

your estimates of reliability. 

Typical Error 

The values of the change score or difference score for each subject yield the typical error. Simply divide the 

standard deviation of the difference score by root2. For example, if the difference scores are 5, -2, 6, 0, and 
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-3, the standard deviation of these scores is 4.1, so the typical error is 4.1/root2 = 2.9. This method for 

calculating the typical error follows from the fact that the variance of the difference score (s2
diff) is equal to 

the sum of the variances representing the typical error (s) in each trial: s2
diff = s2 + s2, so s = sdiff/root2. 

To derive this within-subject variation as a coefficient of variation (CV), log-transform your variable, then do 

the same calculations as above. The CV is derived from the typical error (s) of the log-transformed variable 

via the following formula: 

       CV = 100(es  -  1), 

which simplifies to 100s for s<0.05 (that is, CVs of less than 5%). You will also meet this formula on the 

page about log-transformation, where I describe how to represent the standard deviation of a variable that 

need log transformation to make it normally distributed. As I describe on that page, I find it easier to 

interpret the standard deviation and shifts in the mean if I make the log transformation 100x the log of the 

variable. That way the typical error and shifts in the mean are already approximately percents. To convert 

them to exact percents, the formula becomes 100(es/100  -  1). 

We sometimes show the typical error with a ± sign in front of it, to indicate that a subject's observed value 

varies by typically ± the typical error whenever we measure it. For example, the typical error in a monthly 

measurement of body mass might be ±1.5 kg. When we express the typical error as a CV, we can also 

think of it as ±2.1% (if the subject weighed 70 kg), but strictly speaking it's more appropriate to show the 

variation as ×/÷1.021. In other words, from month to month the body mass is typically high by a factor of 

1.021 or low by a factor of 1/1.021. These factors come from the assumption that the log-transformed 

weight rather than the weight itself is normally distributed. Now, ×1.021 is the same as 1 + 0.021, and 

1/1.021 is almost exactly 1 - 0.021, so it's OK to show the CV as ±2.1%. But when the CV is bigger than 5% 

or so, the use of the minus sign gets more inaccurate. For example, if the CV is 35%, the value of the 

variable varies typically by a factor of 1.35 to 1/1.35, or 1.35 to 0.74, or 1 + 0.35 to 1 - 0.26, which is 

certainly not the same as 1 + 35% to 1 - 35%. You can still write ±35%, but be aware that the implied 

typical variation in the observed value is ×/÷1.35. 

Changes in the Mean 

A simple way to get these is to do paired t tests between the pairs of trials. Do it on the log-transformed 

variable and you'll get approximate percent changes in the mean between trials. Use the same formulae as 

for the CV to turn these into exact percent changes. 

Retest Correlation 

A simple Pearson correlation is near enough. If the variable is closer to normally distributed after log 

transformation, you should use the correlation derived from the log-transformed variable. Alternatively 

calculate the intraclass correlation coefficient from the formula ICC = (SD2 - sd2)/SD2, where SD is the 

between-subject standard deviation and sd is the within-subject standard deviation (the typical or standard 

error of measurement). These standard devations can come from different subjects, if you want to estimate 

the retest correlation by combining the error in one study applied to a different group. The spreadsheet for 

the ICC has this formula and confidence limits for the ICC. 

Note that the above relationship allows you to calculate the typical error from a retest correlation, when you 

also know the between-subject standard deviation: sd = SD·root(1 - r). Strictly speaking the r should be the 

intraclass correlation, but there is so little difference between the Pearson and the ICC, even for as few as 

10 subjects, that it doesn't matter. 

 

 Three or More Trials

 
I deal here with the procedures for getting the average reliability across three or more trials. The simplest 

and possibly the most practical or realistic procedure is simply to average the reliability for the consecutive 

pairs of trials. Well, it's not that simple to average the standard deviations representing the typical error, 

because you have to weight their squares by the degrees of freedom, then take the square root. I've done it 

for you in the reliability spreadsheet. The resulting average is the typical error you would expect for the 

http://www.sportsci.org/resource/stats/stdev.html#cv
http://www.sportsci.org/resource/stats/logtrans.html
http://www.sportsci.org/resource/stats/logtrans.html#cv
http://www.sportsci.org/resource/stats/repanova.html#pairedt
http://www.sportsci.org/resource/stats/xICC.xls
http://www.sportsci.org/resource/stats/xICC.xls
http://www.sportsci.org/resource/stats/relycalc.html#bot


33 
 

average time between consecutive pairs of trials, and you usually make that the same (e.g., 1 week) when 

you design the reliability study. 

There are more complicated procedures for getting the average reliability, using ANOVA or repeated-

measures analyses. There is no spreadsheet for these procedures. I'll describe the usual approach, which 

is based on the assumption that there is a single random error of measurement that is the same for every 

subject for every trial. That is, whenever you take a measurement, a random number comes out of a hat 

and gets added to the true value. The numbers in the hat have a mean of zero, and their standard deviation 

is the error of measurement that you want to estimate. Or to put it another way, no matter which pairs of 

trials you select for analysis, either consecutive (e.g., 2+3) or otherwise (e.g., 1+4), you would expect to get 

the same error of measurement. This assumption may not be particularly realistic, if, for example, you did 5 

trials each one week apart: the error of measurement between the first and last trial is likely to be greater 

than between trials closer together. If you estimate the error assuming it is the same, you will get something 

that is too large for trials close together and too small for trials further apart. 

To understand this section properly, read the pages on statistical modeling. In a reliability study or analysis, 

you are asking this question: how well does the identity of a subject predict the value of the dependent 

variable, when you take into account any shift in the mean between tests? (If the variable is reliable, the 

value of the variable is predicted well from subject to subject. If the variable is unreliable, it isn't much help 

to know who the subject is.) So the model is simply: 

dependent variable <= subject test 

In other words, it's a two-way analysis of variance (ANOVA) of your variable with subject and test as the 

two effects. Do NOT include the interaction term in the model! The analysis is not done as a repeated-

measures ANOVA, because the subject term is included in the model explicitly. Experts with the Statistical 

Analysis System can use a repeated-measures approach with mixed modeling, as described below 

in modeling variances. 

Typical Error 

The root mean-square error (RMSE) in the ANOVA is a standard deviation that represents the within-

subject variation from test to test, averaged over all subjects. If your stats package doesn't provide 

confidence limits for it, use the spreadsheet for confidence limits. 

If you use a one-way ANOVA in which the only effect is subject, the RMSE will be contaminated by any 

change in the mean between trials. (In a two-way ANOVA, the test effect takes out any change in the 

mean.) The resulting RMSE represents the total error of measurement. You can also derive the total error 

by calculating each subject's standard deviation, squaring them, averaging them over all subjects, then 

taking the square root. This procedure works for two trials, too. I don't recommend total error as a measure 

of reliability, because you don't know how much of the total error is due to change in the mean and how 

much is due to typical error. 

Changes in the Mean 

Your stats program should be able to give you confidence limits or p values for each consecutive pairwise 

comparison of means. If it gives you only the p values, convert these to confidence limits using 

the spreadsheet for confidence limits. 

Shifts in the mean and typical error as percents are derived from analysis of the log-transformed variable. 

See the previous section for the formula. 

Retest Correlation 

Scrutinize the output from the ANOVA and find something called the F value for the subject term. The 

retest correlation, calculated as an intraclass correlation coefficient (ICC), is derived from this F value: 

ICC = (F - 1)/(F + k - 1), 

where k = (number of observations - number of tests)/(number of subjects - 1). In the case of no missing 

values, number of observations = (number of tests)·(number of subjects), so k is simply the number of 

tests. For example, a reliability study of gymnastic skill consisted of 3 tests on 10 subjects. There were 28 
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observations instead of 30, because two athletes missed a test each, so k = (28-3)/(10-1) = 2.78. The F 

ratio for subjects was 56. Reliability was therefore (56-1)/(56+2.78-1) = 0.95. 

I used to have this formula in the spreadsheet for confidence limits, then I removed it for many years, 

thinking that people don't need it. Recently (2009) I've started expressing predictability of competitive 

athletic performance as an ICC, and I found I do need it and related formulae. So they're back, in their 

own spreadsheet for the ICC. 

The ICC formula came from Bartko (1966), although he used sums of squares rather than F values. His 

formula for k when there are missing values is complex and appears not to be the same as the one I have 

given above. The random statement in Proc Glm of the Statistical Analysis System generates k, and I have 

found by trial and error that my formula gives the exact value. 

Your stats program will give you p value for the subject term and the test term. The p value for subject is 

not much use. It tells you whether the ICC is statistically significantly different from zero, but that's usually 

irrelevant. The ICC is usually at 0.7-0.9 or more, so there's no way it could be zero. More important are the 

confidence limits for the ICC and for the typical error. The p value for test addresses the issue 

of overall differences between the means of the tests, but with more than two tests you should pay more 

attention to the significance of consecutive pairwise differences (to see where any learning effects fade 

out). I'd prefer you to show the confidence intervals for the differences, rather than the p values. If your 

stats program doesn't give confidence intervals, use the spreadsheet for confidence limits for the typical 

error, and the spreadsheet for the ICC for confidence limits for the ICC. By the way, stats programs don't 

provide a p value for the typical error, because there's no way it can be zero. 

The typical error or root mean square error (RMSE) from one group of subjects can be combined with the 

between-subject standard deviation (SD) of a second group to give the reliability correlation for the second 

group. This approach is handy if you do repeated testing on only a few subjects to get the within-subject 

variation, but you want to see how that translates into a reliability correlation when you combine it with the 

SD from single tests on a lot more subjects. You simply assume that the within-subject variation is the 

same for both groups, then apply the formula that defines the reliability correlation: 

ICC = (SD2 - typical error2)/SD2. 

(This formula can be derived simply enough from the definition of correlation as the covariance of two 

variables divided by the product of their standard deviations.) The spreadsheet for the ICC deals with this 

scenario, too. 

For non-normal variables, your analyses in the main study are likely to be non-parametric. So it makes 

sense to derive a non-parametric reliability. Just do the ANOVA on the rank-transformed variable. The 

within-subject variation is hard to interpret, though. 

Attention sport psychologists: if the repeated "tests" are simply the items of an inventory, the alpha 

reliability of the items (i.e., the consistency of the mean of the items) is (F - 1)/F. 

For nominal variables (variables with categories as values rather than numbers), the equivalent of the ICC 

is the kappa coefficient. Your stats program should offer this option in the output for the procedure that 

does chi-squared tests or contingency tables. 

 Modeling Variances for Reliability

 
A reliability studiy is just an experiment without an intervention, so any method for analyzing an experiment 

will work for a reliability study. Modeling variances is one such method. In SAS, you model variances 

with Proc Mixed, using the model for simple repeated measures. The procedure produces the within 

variance and its confidence limits. It also produces the retest correlation as an intraclass correlation, but to 

get its confidence limits you'll have to use the spreadsheet for confidence limits. I don't know whether the 

other major stats programs have procedures like Proc Mixed for modeling variances. 
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 Non-Uniform Error of Measurement

 
I've already introduced the concept of non-uniform error (heteroscedasticity) to describe the situation when 

some subjects are more reliable than others. You should always check whether your typical error is non-

uniform, but you will need plenty of subjects to make any definite conclusions. One good way to check is to 

calculate the typical error for different subgroups. Often the typical error varies with the magnitude of the 

variable, so try splitting your subjects into a top half and a bottom half and analyzing them separately. For 

the data on skinfold thickness in the spreadsheet for reliability, the typical errors of the bottom and top 

halves are 0.48 and 1.03 mm (not shown on the spreadsheet--you'll have to do it yourself). It certainly looks 

like subjects with a bigger sum of skinfolds have more variability, but with only 10 subjects in each half, 

there's a lot of uncertainty about just how big the difference really is. 

Depending on the sample and the variable, you should also analyze the typical errors for subgroups 

differing in sex, athletic status, age group, and so on. You sometimes find that any differences in reliability 

between such groups arise mainly from differences in the magnitude of the variable; for example, if log 

transformation removes any non-uniformity of error related to the magnitude of the variable, you will 

probably find that the subgroups for sex, age or whatever now have the same percent typical errors. 

A more statistical approach to checking for differences in the typical error between subjects is to look at the 

scatter of points in the plot of the two trials. The scatter at right angles to the line of identity should be the 

same wherever you are on the line (and for whatever subgroups). If there is more scatter at one end, the 

subjects at that end have a bigger typical error. It's often difficult to tell whether the scatter is uniform on the 

plot, especially when reliability is high, because the points are all too close to the line. An easier way is to 

plot the change score against the average of the two trials for each subject. I have provided such a plot on 

the spreadsheet. (It's not obvious even on this plot that the subjects with bigger skinfolds have more 

variability. Again, more subjects are needed.) I've also provided a complete analysis for the log-transformed 

variable. A uniform scatter of the change scores after log-transformation implies that the coefficient of 

variation (CV, or percent typical error) is the same for all subjects, and the analysis of the log-transformed 

variable provides the best estimate. Look at the plots of the difference scores and you will see that the 

scatter is perhaps a little more uniform after log transformation. When I analyzed the bottom and top halves 

of the log-transformed variable, I got CVs of 1.1% and 2.0%. These CVs are a little closer together than 

their corresponding raw typical errors, so it would be better to represent the mean typical error for the full 

sample as 1.7% rather than 0.83 mm. But really, you need more subjects... 

When you analyze three or more trials using ANOVA or repeated measures, the equivalent of the 

difference scores is the residuals in the analysis, and the equivalent of the average of the two trials is the 

predicted values. The standard deviation of the residuals is the typical error, so if the residuals are bigger 

for some subjects (some predicteds), the typical error is bigger for those subjects. Try to coax your stats 

program into producing a plot of the residuals vs the predicteds. Click for more information about residuals 

and predicteds, and aboutbad residuals (heteroscedasticity). 

 Biased Estimates of Reliability

 
Some statisticians think mistakenly that reliability should be calculated with a one-way ANOVA, in which 

you leave out the term for the identity of the tests. The trouble is, a one-way ANOVA produces an estimate 

of retest correlation that is biased low for small samples, and it is even lower if the means differ between 

trials. The within-subject variation from the analysis is the same as the total error, which will be larger than 

the typical error when there is any systematic change in the mean between trials. Neither of these 

estimates of reliability should be used to estimate sample sizes for longitudinal studies. 

The Pearson correlation coefficient is also a biased estimate of retest correlation: it is biased high for small 

sample sizes. For example, with only two subjects you always get a correlation of 1! For samples of 15 or 

more subjects, the ICC and the Pearson do not usually differ in the first two decimal places. 

I used to think that limits of agreement were biased high for small samples, because I thought they were 

defined as the 95% confidence limits for a subject's change between trials. (The formula for confidence 
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limits includes the t statistic, which is affected by sample size in such a way that the limits defined in this 

way would be biased high for small samples.) But apparently Bland and Altman, the progenitors of limits of 

agreement, did not define limits of agreement as 95% confidence limits; instead they defined them as a 

"reference range", generated by multiplying the typical error by 2.77, regardless of the size of the sample 

that is used to estimate the typical error. In other words, the limits of agreement represent 95% confidence 

limits for a subject's true change only if the typical error is derived from a large sample. With this definition, 

the limits of agreement are only as biased as the typical error. 

Surprisingly, even the typical error is biased! Yes, the square of the typical error (a variance) is unbiased, 

so the square root of the variance must be biased low for small samples. In practical terms, typical errors 

derived from samples of, say, 10 subjects tested twice will look a bit smaller on average than typical errors 

derived from hundreds of subjects or many retests. This bias in the typical error does not affect any 

statistical computations involving the typical error. 

 Spreadsheet for Calculating Reliability

 
The spreadsheet computes the following measures of reliability between consecutive pairs of trials: change 

in the mean, typical error, retest correlation (Pearson and intraclass), total error, and limits of agreement. 

Data in the spreadsheet are from a study of the reliability of the sum of seven skinfolds for a group of 

athletes. 

The spreadsheet now includes averages for the consecutive pairwise estimates of error, with confidence 

limits. This approach to combining more than two trials is probably more appropriate than the usual 

analysis of variance or repeated-measures analysis that I describeabove (and which, in any case, I can't 

set up easily on a spreadsheet). I have also included averages of trial means and standard deviations, in 

case you want to report these as characteristics of your subjects. 

Pairwise reliability analyses: Excel spreadsheet 

See also the spreadsheet for the ICC, when you have between- and within-subject standard deviations and 

you want the ICC and its confidence limits, or you have the ICC and you want its confidence limits, or you 

have an F ratio from an ANOVA and you want the ICC and its confidence limits. 

 

 MEASURES OF VALIDITY

 
Update Oct 2011: view this slideshow on validity and reliability for an overview of the important principles.  

If you haven't read the general introduction to precision of measurement, do so now. A variable or measure 

is valid if its values are close to the true values of the thing that the variable or measure represents. In plain 

language, it's valid if it measures what it's supposed to. This concept of validity is known as concurrent 

validity, and it's the only one I will deal with here. 

Measures of validity are similar to measures of reliability. With reliability, you compare one measurement of 

a variable on a group of subjects with another measurement of the same variable on the same subjects. 

With validity, you also compare two measurements on the same subjects. The first measurement is for the 

variable you are interested in, which is usually some practical variable or measure. The second 

measurement is for a variable that gives values as close as you can get to the true values of whatever you 

are trying to measure. We call this variable the criterion variable or measure. The three main measures of 

reliability--change in the mean, within-subject variation, and retest correlation--are adapted to represent 

validity. I call them the estimation equation, typical error of the estimate, and validity correlation. There is 

also a measure of limits of agreement. I have a little to say on validity of nominal variables (kappa 

coefficient, sensitivity, and specificity), and I finish this page with a spreadsheet for calculating validity. 
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You will find that correlation has a more prominent role in validity than in reliability. Most applications of 

validity involve differences between subjects, so the between-subject standard deviation stays in the 

analysis and can be expressed as part of a correlation. In contrast, most applications of reliability involve 

changes within subjects; when you compute changes, the between-subject variation disappears, and with it 

goes correlation. 

Let's explore these concepts with an example similar to the one I used for 

reliability. Imagine you are a roving applied sport scientist, and you want to 

measure the weight of athletes quickly and easily with portable bathroom scales. 

You check out the validity of the bathroom scales by measuring a sample of 

athletes with the scales and with certified laboratory scales, as shown in the 

figure. I've shown only 10 points, but in practice you'd use probably 20 or so, 

depending on how good the scales were. 

Note that I have assigned the observed value of the variable to the X axis, and the true value to the Y axis. 

That's because you want to use the observed value to predict the true value, so you must make the 

observed value the independent variable and the true value the dependent variable. It's wrong to put them 

the other way around, even though you might think that the observed value is dependent on the true value. 

 Estimation Equation

 
The dotted line in the figure represents perfect validity: identical weights on the bathroom and lab scales. 

The solid line is the best straight line through the observed weights. Notice how the lighter weights are 

further away from the true value. That trend away from the true value is represented by 

the estimation or calibration equation. Any deviation away from the dotted line represents a systematic 

offset. 

Notice also that a straight line is a pretty good way to relate the observed value to the true value. You'd be 

justified in fitting a straight line to these data and using it to predict the true weight (lab scales) from the 

observed weight (bathroom scales) for any athletes on your travels. 

By the way, you won't always get a straight line when you plot true values against observed values. When 

you get a curve, fit a curve! You can fit polynomials or more general non-linear models. You know you have 

the right curve when your points are scattered fairly evenly around it. Use the equation of the curve to 

predict the true values from the observed values. 

You can also use a practical measure that looks nothing like the criterion measure. For example, if you are 

interested in predicting body fat from skinfold thickness, the practical measure would be skinfold thickness 

(in mm) measured with calipers, and the criterion measure could be body fat (as percent of body mass) 

measured with dual-emission X-ray absorptiometry (DEXA). You then find the best equation to link these 

two measures for your subjects. 

There are sometimes substantial differences in the estimation equation for different groups of subjects. For 

example, you'd probably find substantially different equations linking skinfold thickness to body fat for 

subjects differing in such characteristics as sex, age, race, and fitness. Sure, you can derive separate 

equations for separate subgroups, but it's usually better to account for the effect of subject characteristics 

by including them as independent variables in the estimation equation. For that you need the technique 

of multiple linear regression, or you could even go to exotic multiple non-linear models. A stepwise or 

similar approach will allow you to select only those characteristics that produce substantial improvements in 

the estimation of the criterion. 

 Typical Error of the Estimate

 
Notice how the points are scattered about the line. This scatter means that any time you use the line to 

estimate an athlete's true weight from the bathroom scales, there will be an error. The magnitude of the 

error, expressed as a standard deviation, is the typical error of the estimate: it's the typical error in your 
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estimate of an athlete's true weight. We've met this term already as the standard error of the estimate. I 

used to call it the standard deviation of the estimate. Now I prefer typical error, because it is the typical 

amount by which the estimate is wrong for any given subject. In the above example, the typical error of the 

estimate is 0.5 kg. 

The typical error of the estimate is usually in the output of standard statistical analyses when you fit a 

straight line to data. If you fit a curve, the output of your stats program might call it the root mean-square 

error or the residual variation. Some stats programs provide it in the squared form, in which case you will 

have to take the square root. Your program almost certainly won't give you confidence limits for the typical 

error, but you should nevertheless calculate them and publish them. See the spreadsheet for confidence 

limits. 

In the sections on reliability, I explained that the within-subject variation can be calculated as a percent 

variation--the coefficient of variation--by analyzing the log of the variable. The same applies here: take logs 

of your true and observed values, fit a straight line or curve, then convert the typical error of the estimate to 

a percent variation using the same formula as for reliability. See reliability calculations for the formula. 

Analysis of the logs is included in the validity spreadsheet. In the above example the standard deviation is 

0.7%. Expressing the standard deviation as a percent is particularly appropriate when the scatter about the 

line or curve gets bigger for bigger untransformed values of the estimate. Taking logs usually makes the 

scatter uniform. See log transformation for more. 

New-Prediction Error 

If a validity study has a small sample size (<50 subjects), the typical error of the estimate is accurate only 

for the subjects in the validity study. When you use the equation to predict a new subject's criterion value, 

the error in the new estimate--let's call it the new-prediction error--is larger than the original typical error of 

the estimate. Why? Because the calibration equation (intercept and slope) varies from sample to sample, 

and the variation is negligible only for large samples. The variation in the calibration equation for small 

samples therefore introduces some extra uncertainty into any prediction for a new subject, so up goes the 

error. The uncertainty in the intercept contributes a constant additional amount of error for any predicted 

value, but the error in the slope produces a bigger error as you move away from the middle of the data. 

Your stats program automatically includes these extra errors when you request confidence limits for 

predicted values. You will find that the confidence limits get further away from the line as you move out 

from the middle of the data. The effect is noticeable only for small samples or only for predicted values that 

are far beyond the data. 

So, exactly how big is the error in a predicted value based on a validity or calibration study with a small 

sample size? If you have enough information from the study, you can work out the error accurately for any 

predicted value. Obviously you need the slope, intercept, and the typical error of the estimate. You also 

need the mean and standard deviation of the practical variable (the X values). I've factored all these into 

the formulae for the upper and lower confidence limits of a predicted value in the spreadsheet for analysis 

of a validity study. I've also included them in the validity part of the spreadsheet for assessing an individual. 

(In that spreadsheet I've used the mean and standard deviation of the criterion or Y variable, because it's 

convenient to do so, and the difference is negligible.) 

When you don't have access to the means or standard deviations from the validity study, you can work out 

an average value for the new-prediction error, on the assumption that your new subject is drawn randomly 

from the same population as the subjects in the validity study. One approach to calculating this error is via 

the PRESS statistic. (PRESS = Predicted REsidual Sums of Squares.) I won't explain the approach, partly 

because it's complicated, partly because the PRESS-derived estimate is biased high, and partly because I 

have better estimates. For one predictor variable, the exact formula for the new-prediction error appears to 

be the typical error multiplied by root(1+1/n+1/(n-3)), where n is the sample size in the validity study. I 

checked by simulation that this formula works. I haven't yet worked out the exact formula for more than one 

predictor variable, but my simulations show that the typical error multiplied by root[(n-1)/(n-m-2)] is pretty 

good, where m is the number of predictor variables. 

http://www.sportsci.org/resource/stats/see.html
http://www.sportsci.org/resource/stats/rmse.html
http://www.sportsci.org/resource/stats/rmse.html
http://www.sportsci.org/resource/stats/modelsdetail.html#residuals
http://www.sportsci.org/resource/stats/generalize.html#excel
http://www.sportsci.org/resource/stats/generalize.html#excel
http://www.sportsci.org/resource/stats/relycalc.html
http://www.sportsci.org/resource/stats/valid.html#excel
http://www.sportsci.org/resource/stats/logtrans.html
http://www.sportsci.org/resource/stats/valid.html#excel
http://www.sportsci.org/resource/stats/valid.html#excel
http://www.sportsci.org/resource/stats/relyappl.html#excel
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Researchers in the past got quite confused about the concept of error in the prediction of new values. They 

used to split their validity sample into two groups, derive the estimation equation for one group, then apply it 

to the second group to check whether the error of the estimate was inflated substantially. That approach 

missed the point somehow, because the error was bound to be inflated, although they apparently didn't 

realize that the inflation was usually negligible. And whether or not they found substantial inflation, they 

should still have analyzed all the data to get the most precise estimates of validity and the calibration 

equation. The PRESS approach has a vestige of that data-splitting philosophy. Not that it all matters much, 

because most validity studies have more than 50 subjects, so the new-prediction error from these studies is 

practically identical to the typical error of the estimate. 

A final point about the new-prediction error: don't use it to compare the validity of one measure with that of 

another, even when the sample sizes are small and different. Use the typical error, which is an unbiased 

and unbeatable measure of validity, no matter what the sample size. (Actually, it's the square of the typical 

error that is unbiased, but don't worry about that subtlety.) 

Non-Uniform Error of the Estimate 

You will recall that calculations for reliability are based on the assumption that every subject has the same 

typical error, and we used the term heteroscedasticity to describes any non-uniform typical error. The same 

assumption and terminology underlies calculations for the validity, and the approach to checking for and 

dealing with any non-uniformity is similar. 

Start by looking at the scatter of points on the plot of the estimation equation. If every subject has the same 

typical error of the estimate, the scatter of points, measured in the vertical direction on the graph (parallel to 

the Y axis), should be the same wherever you are on the line or curve. It's difficult to tell when the points lie 

close to the line or curve, so you get a much better idea by examining the difference between the observed 

and the predicted values of the criterion for each subject. These differences are known as the residuals, 

and it's usual to plot the residuals against predicteds values. I have provided such a plot on the 

spreadsheet, or click here to see a plot from a later section of this text. If subjects in one part of the plot 

have a bigger scatter, they have a bigger typical error (because the standard deviation of the residuals is 

the typical error). The calculated typical error of the estimate then represents some kind of average 

variation for all the subjects, but it will be too large for some subjects and too small for others. 

To get an estimate of the typical error that applies accurately to all subjects, you have to find some way to 

transform the criterion and practical measures to make the scatter of residuals for the transformed 

measures uniform. Once again, logarithmic transformation often reduces non-uniformity of the scatter in 

situations where there is clearly more variation about the line for larger values of the criterion. A uniform 

scatter of the residuals after log transformation implies that the typical error, when expressed as a percent 

of the criterion value, is the same for all subjects; the typical error from analysis of the log-transformed 

measures then gives the best estimate of its magnitude. I have included an analysis of the log-transformed 

measures in the spreadsheet, although for the data therein it is clear that the scatter of residuals is more 

uniform for the raw measures than for the log-transformed measures. 

If you fit a curve rather than a straight line to your data, the standard deviation of the residuals (the root 

mean square error) still represents the typical error in the estimate of the criterion value for a given practical 

value. To estimate the typical error from the spreadsheet might be too difficult, though, because you will 

have to modify the predicted values according to the type of curve you used. It may be easier to use a stats 

program. The typical error in the output from the stats program will be labeled either as the SEE, the root 

mean-square error, or the residual error. Some stats programs provide the typical error as a variance, in 

which case you will have to take the square root. 

When you have subgroups of subjects with different characteristics (e.g., males and females), don't forget 

to check whether the subgroups have similar typical errors. To do so, you should label the points for each 

subgroup in the plot of residuals vs predicteds, because what looks like a uniform scatter might conceal a 

big difference between the subgroups. If there is a big difference, you shouldn't use a composite estimation 

equation for the two groups; instead, you should derive separate equations and separate typical errors for 

each subgroup. 

http://www.sportsci.org/resource/stats/modelsdetail.html#hetero
http://www.sportsci.org/resource/stats/relycalc.html#nonuniform
http://www.sportsci.org/resource/stats/modelsdetail.html#residuals
http://www.sportsci.org/resource/stats/modelsdetail.html#hetero


40 
 

Validity Limits of Agreement 

By analogy with reliability limits of agreement, we can define validity limits of agreement as the 95% likely 

range or reference range for the difference between a subject's values for the criterion and practical 

measures. Let's try to understand this concept using the data in the validity spreadsheet. 

The data are from a validity study in which the practical measure was body fat estimated using a Bod Pod, 

and the criterion measure was body fat measured with a DEXA scan. The units of body fat are percent of 

body mass (%BM). The limits of agreement (not shown in the spreadsheet) are -2.9 to 7.9 %BM, or 2.5 ± 

5.4 %BM. You can interpret these numbers in two ways: there's a 95% chance that a subject's "true" 

(DEXA) body fat is within 2.5 ± 5.4 %BF of his or her Bod Pod value; or, if you measured a large number of 

subjects in the Bod Pod, 95% of them would have a DEXA body fat within 2.5 ± 5.4 %BF of their Bod Pod 

values. The value 2.5 in this example is the mean of the criterion-practical difference (or the difference 

between the means of the criterion and practical measures); it is sometimes known as the bias in the 

practical measure, but don't confuse this concept with the small-sample bias I described in connection with 

measures of reliability. The value ±5.4 on its own is usually referred to as the limits of agreement; it is ±2.0x 

the standard deviation of the criterion-practical difference (= 2.7). The standard deviation of the criterion-

practical difference is itself known as the pure error or total error. 

Limits of agreement are related to the typical error of the estimate. When the slope of the estimation 

equation is exactly 1, the pure error is the same as the typical error, so in this special case the limits of 

agreement are twice the typical error. If the slope differs from 1, the limits of agreement are greater than 

twice the typical error. If the calibration equation is a curve rather than a straight line, the limits of 

agreement will also be greater than twice the typical error. 

Advocates of limits of agreement encourage authors to plot the criterion-practical differences against the 

mean of these measures (or against the criterion). The resulting plot is similar to a plot of the residuals 

against the predicteds from the analysis of the estimation equation: if the estimation equation is a straight 

line of slope close to 1, the criterion-practical differences are the same as the residuals, and the mean of 

the criterion and practical is near enough to the predicted value. The plot will therefore allow you to check 

for heteroscedasticity. If the calibration equation is a straight line with slope different from 1, or if it is a 

curve, the scatter of points in the plot of the criterion-practical differences will show a trend towards a 

straight line or a curve, so it will be harder to tell if heteroscedasticity is present. 

Validity limits of agreement suffer from problems similar to those of reliability limits of agreement: they are 

harder to understand than the typical error, and they are too large as a reference range for making a 

decision about a subject's true (criterion) measurement. The fact that the nature of the estimation equation 

affects the magnitude of the limits is also a serious problem. Unfortunately some authors have published 

limits of agreement without an estimation equation or the typical error, so readers cannot properly assess 

the practical measure and the published data cannot be used to recalibrate the practical measure. 

 Validity Correlation

 
The properties of the validity correlation are similar to those of the retest correlation. In particular... 

 The correlation is a measure that combines within- and between-subject variation. Within here 

refers to the typical error of the estimate. 

 The correlation gives you a good idea of how well the observed value of a variable (weight on 

bathroom scales in our example) retains the true rank order of subjects. Correlations >0.90 are 

needed to retain reasonable order in the ranking. Don't use those bathroom scales to assign 

athletes to competitive classes based on weight unless the validity correlation is well above 0.90! 

 The correlation is unaffected by any systematic offset. 

 The correlation is sensitive to the nature of the sample used to estimate it. For example, if the 

sample is homogeneous, the correlation will be low. So whenever you interpret a correlation, 

remember to take the sample into consideration. 

http://www.sportsci.org/resource/stats/precision.html#loa
http://www.sportsci.org/resource/stats/valid.html#excel
http://www.sportsci.org/resource/stats/relycalc.html#bias
http://www.sportsci.org/resource/stats/precision.html#relycorr
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 In contrast, the typical error of the estimate can be estimated from a sample of subjects that is not 

particularly representative of the population you want to study. You can usually assume the estimate 

applies to any subject in the population. 

When it comes to calculating the validity correlation, you don't have much choice: if you fit a straight line to 

the data, the correlation is a Pearson correlation coefficient--there is no equivalent intraclass correlation 

coefficient. If you fit a curve, the stats program should provide you with a goodness-of-fit statistic called the 

variance explained or the R-squared. Just take the square root of this statistic and you have the equivalent 

of the Pearson correlation coefficient. 

An estimate of validity correlation can also be obtained by taking the square root of the concurrent 

reliability correlation. By concurrent reliability I mean the immediate retest reliability, rather than the retest 

reliability over the time frame of any experiment you may be planning. This relationship between validity 

and reliability comes about because reliability is the correlation of something with itself (and there is error in 

both measurements), whereas validity is something correlated with the real thing (so there is error in only 

one measurement). The relationship can be derived from the definition of correlation (covariance divided by 

product of standard deviations) applied to the validity and reliability correlations. 

The square root of concurrent reliability represents the maximum possible value for validity. The actual 

validity correlation could be less, because a measure can have high reliability and low validity. To put it 

another way, a measure can produce nonsense consistently! 

Validity can be difficult to measure, because the true value of something can be difficult to assay. Measures 

other than the true value are called surrogates. These measures usually result in underestimates of 

validity when they are correlated with observed values, for obvious (I hope) reasons. Here's an example. 

Body density obtained by underwater weighing is often referred to as the gold standard for estimating 

percent body fat, but it is only a surrogate for true percent body fat. So if you are validating a skinfold 

estimate of body fat against the value obtained by underwater weighing, the validity correlation will be lower 

than if you validated the skinfold estimate against a more accurate method than underwater weighing, for 

example, a DEXA scan. Similarly the typical error of the estimate will be smaller when you validate 

skinfolds against DEXA rather than underwater weighing. 

 Validity of Nominal Variables

 
Validity of nominal variables can be expressed as a kappa coefficient, a statistic analogous to the 

Pearson correlation coefficient. Validity of nominal variables doesn't come up much in sport or exercise 

science--there's usually no question that you've got someone's sex or sport right--but it's a big issue in 

clinical medicine, where yes/no decisions have to be made about the presence of a disease or about 

whether to apply an expensive treatment. In cases where the variable has only two levels, clinicians have 

come up with other measures of validity that are easier to interpret than correlations. For 

example, sensitivity is the proportion or percent of true cases (people with a disease) correctly categorized 

as having the disease by the instrument/test/variable, and specificity is the proportion of true non-cases 

(healthy people) correctly categorized as being healthy. I have been unable to find or devise a simple 

relationship between the kappa coefficient and these two measures. One of these days... 

 Spreadsheet for Calculating Validity

 
This spreadsheet shows an example of a simple linear relationship between a practical measure (body fat 

derived from body density, estimated with the Bod Pod) and a criterion measure (body fat derived from dual 

energy X-ray absorptiometry, or DEXA). To use the spreadsheet, replace these data with your own data. 

The spreadsheet estimates the calibration equation and the following measures of validity: typical error of 

the estimate, new-prediction error, correlation coefficient, and limits of agreement (but don't use them!). 

Analysis of log-transformed data is included for estimation of errors as percents of the mean. 

http://www.sportsci.org/resource/stats/modelsdetail.html#goodness
http://www.sportsci.org/resource/stats/correl.html#covar
http://www.sportsci.org/resource/stats/summarize.html#data
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Analysis of validity studies: Excel latest Help!  

 

 APPLICATIONS OF VALIDITY

 
The applications are: tweaking up the sample size for a cross-sectional study, assessing an individual to 

predict her/his criterion value, comparing the validity of measures (to select a good one), and deciding 

whether a measure is valid enough for monitoring for changes in an individual's criterion value. I also 

consider sample size for validity studies on this page. 

 Sample Size for a Cross-Sectional Study

 
Just as reliability affected sample size in experimental or longitudinal studies, validity impacts sample size 

in descriptive or cross-sectional studies. In such studies, you measure each variable only once, and your 

outcomes are relationships between the variables. The lower the validity, the more the relationships are 

degraded, so the bigger the sample size you need to characterize them. For this application it's easier to 

discuss the effects of validity by considering the validity correlation rather than the typical error of the 

estimate. 

The effect on the magnitude of the relationship between variables is proportional to the validity correlations 

of each variable. For example, suppose you are interested in the relationship between physical activity and 

health, and suppose that the true underlying relationship corresponds to a correlation of 0.50. If your 

measure of physical activity has a validity correlation of 0.7, then in your study of health and physical 

activity you will observe a correlation of only 0.5x0.7, or 0.35 (plus or minus sampling error, of course). The 

sample size required to detect a degraded relationship is inversely proportional the square of the validity 

correlation coefficient of each variable in the relationship. In our example, 1/0.702 = 2.0, so you have to 

double the number of subjects. That's bad news, because most psychometric and subjective behavioral 

measures appear to have validities of 0.7 at best. Objective measures taken on lab instruments or in the 

field usually have validities of 0.8-0.9 or better, so you can often ignore the effect of validity of such 

variables on the magnitude of effects and the required sample size. Go to the section on sample size for 

cross-sectional studies for more information about the actual sample sizes you need. 

 Assessing an Individual

 
When you use a prediction equation to estimate a criterion value from a practical value (e.g., body fat from 

a sum of skinfolds), you should take into account the typical error of the estimate in much the same way as 

you do the typical error of measurement for a single measurement. You use the same factors to generate 

the likely range of the predicted value of the criterion (the factors for a single measurement in the table), but 

you multiply them by the typical error of the estimate. If the typical error is based on a study of less than 50 

subjects, you will need to use a new-prediction error instead of the typical error, as explained earlier. The 

calculations are in the appropriate section of the spreadsheet for assessing an individual. 

Example: You measure a client's skinfolds. You dig around in the literature and find an estimation equation 

that was developed for predicting body fat as a percent of body mass (%BM) in a large number of subjects 

similar to your client. The client's predicted body fat is 26.4 %BM, and the typical error of the estimate for 

the equation based on a large sample of similar subjects is 2.1 %BM. From the table in the section on 

reliability, the factor to multiply by the typical error for an 80% likely range is 1.28, which makes the limits 

26.4 ± 1.28x2.1, or 23.7 to 29.1. You say to the client: "Your predicted body fat is 26.4 %BM, but the odds 

are 4 to 1 that your true (DEXA) body fat is somewhere between 24 and 29 %BM." Use the spreadsheet to 

generate these limits, and also the likelihood that the client's true value is greater than some reference 

value. For example, the likelihood that her true body fat is greater than 25 %BM is 74%, or odds of 3 to 1. 

http://www.sportsci.org/resource/stats/xvalid.xls
http://www.sportsci.org/helpdown.html
http://www.sportsci.org/resource/stats/validappl.html#samplesize
http://www.sportsci.org/resource/stats/validappl.html#assess
http://www.sportsci.org/resource/stats/validappl.html#compare
http://www.sportsci.org/resource/stats/validappl.html#monitor
http://www.sportsci.org/resource/stats/validappl.html#samplevalid
http://www.sportsci.org/resource/stats/ssdetermine.html#design
http://www.sportsci.org/resource/stats/ssdetermine.html#design
http://www.sportsci.org/resource/stats/relyappl.html#table
http://www.sportsci.org/resource/stats/valid.html#press
http://www.sportsci.org/resource/stats/relyappl.html#excel
http://www.sportsci.org/resource/stats/relyappl.html#table
http://www.sportsci.org/resource/stats/relyappl.html#excel
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 Comparing Validity of Measures

 
Just as the typical error of measurement was the best measure for comparing reliability of instruments, 

operators, or protocols, the typical error of the estimate is the best measure for comparing their validity, Do 

not compare the new-prediction errors, however derived: these are appropriate only for assessing 

individuals. As I explained with comparing measures of reliability, use the spreadsheet for confidence 

limits to calculate 80% or 90% likely ranges for the ratio of typical errors determined with different subjects, 

and to get likelihoods for the true ratio being greater that a reference ratio. Get an expert to use mixed 

modeling to estimate likely ranges when the same subjects are used to determine the typical errors. 

 Validity for Monitoring Changes

 
Our discussion of validity thus far has been concerned with the validity of a single measurement on an 

individual. But we often use a practical measure to monitor for changes in a criterion measure. For 

example, we use changes in skinfolds to infer that there have been changes in a subject's body fat. You 

might think that changes in skinfolds would have to reflect changes in body fat, but what if the amount of 

non-fat tissue in a skinfold is affected substantially by the subject's state of hydration or the menstrual 

cycle? In this situation a change in skinfold thickness may or may not represent a change in body fat, so 

skinfold thickness would no longer be a trustworthy measure for tracking body fat. 

How do we decide whether skinfolds or some other practical measure is trustworthy? There are three 

approaches: correlation of spontaneous changes, correlation of induced changes, and correlation of 

original variables. The reliability of the practical and criterion measures usually has to be taken into 

account, so the statistics get quite complex. That might explain why no-one has yet published an adequate 

account of any of these approaches. I will therefore restrict this section to a qualitative overview. 

Correlation of Spontaneous Changes 

The obvious way to see how well changes in a practical measure track changes in a criterion measure is to 

measure some subjects, wait long enough for spontaneous changes to occur in some of them, measure 

them again, then plot the changes in the criterion measure against changes in the practical measure. If you 

get a very strong correlation (>0.95) you know the practical measure is trustworthy. The trouble is, you 

usually get a low correlation. Why? Because the real changes between measurements are usually of the 

same order of magnitude as the noise (the typical errors) in each measurement. The change scores for 

each measure therefore have a big contribution from the typical errors, which are random and uncorrelated, 

so the correlated true changes get lost in the noise in your plot of the change scores. You can estimate 

what the true correlation would be with the typical errors out of the picture, but if the observed correlation is 

poor, you will need hundreds of subjects to get enough precision for the estimate of the true correlation to 

decide whether the practical measure is any good. 

Correlation of Induced Changes 

Another approach is to make large changes happen by giving some kind of treatment to half your subjects. 

You then see how well the practical measure tracks the criterion measure in that half relative to the other 

half by correlating the change scores of all the subjects together. Even if you are successful in finding an 

effective treatment and subjects willing to undergo the treatment, you will have validated the practical 

measure only for changes induced by that particular treatment. In other words, you still won't know whether 

the practical measure is good for tracking spontaneous changes or changes brought about by other 

treatments. 

Correlation of Original Variables 

The third approach is to analyze data from a standard validity or calibration study. If the correlation between 

the practical measure and the criterion measure is near enough to perfect (>0.95), the two measures are 

effectively identical, so changes in the practical measure must track changes in the criterion. All the 

previous remarks about the correlation between change scores apply to the correlation between raw 

scores: the observed correlation will usually be a lot less than 0.95, because the correlation between the 

true values of the practical and criterion measures is degraded by the typical errors; you can estimate the 

http://www.sportsci.org/resource/stats/relyappl.html#compare
http://www.sportsci.org/resource/stats/generalize.html#excel
http://www.sportsci.org/resource/stats/generalize.html#excel
http://www.sportsci.org/resource/stats/threetrials.html#mixed
http://www.sportsci.org/resource/stats/threetrials.html#mixed
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true validity correlation by taking the concurrent retest reliability correlations into account; the true 

correlation needs to be greater than 0.95; and if the typical errors have a large degrading effect on the 

correlation, you will need hundreds of subjects in the validity and reliability studies to make a firm 

conclusion. You also need a reasonably good validity correlation to start with, which you won't get if your 

subjects are a homogeneous subgroup. Another problem is that even the true correlation between the 

measures may turn out to be less than 0.95, yet the practical measure will still track changes well. For 

example, the amount of non-fat tissue in skinfolds might vary between individuals with the same body fat 

(resulting in a relatively poor correlation between skinfolds and body fat), but the amount of non-fat tissue 

might not change with hydration status (so changes in skinfolds will still mirror changes in fat). This problem 

does not arise with the first two approaches, because the constant amount of non-fat tissue in each 

subject's skinfolds disappears from the change in skinfolds. 

Each of these three approaches has its strengths and weaknesses. The third approach is best for a 

heterogeneous group of subjects, but only if it produces a very high and precise estimate of the true 

correlation. If the group is homogeneous, or if the true correlation is poor, you will have to use one of the 

two change-score approaches. Inducing changes with an appropriate treatment may give you a good 

estimate of the correlation between the change scores, but you end up validating the practical measure 

only for the treatment you used. The greatest strength of the first approach is that it validates the practical 

measure for tracking the changes that occur in the normal course of events, but the validation won't be 

clear cut if the changes are too small. 

 Sample Size for Validity Studies

 
As with reliability, sample size for estimation of validity is dictated by the need for precision. In this case 

precision of the typical error of the estimate or the new prediction error is the main consideration. You don't 

have the option of performing more than two tests; instead, you have to get adequate precision by 

increasing the number of subjects. For a reliability study involving a noisy measure, I recommended a 

minimum of 50 subjects tested three times. In terms of degrees of freedom (which dictate the precision of 

estimates of typical error), that is equivalent to about 100 subjects tested twice, so that is the preferred 

minimum sample size for a validity study of a noisy practical measure. 

When there are several independent variables (regressors) in the prediction equation, an important 

consideration is ensuring that the typical error is uniform across the range of the regressor (or between 

subgroups represented by the regressor). Extrapolating from what I said about sample size for comparison 

of typical errors of measurement, I suggest adding 100 subjects for each extra regressor. (After all, if there 

are substantial differences in the typical error of the estimate between subgroups, and if the differences are 

resistant to transformation, you will have to perform separate analyses for each subgroup, each of which 

will require 100 subjects.) Many published validity studies with multiple regressors have involved several 

hundred subjects, but I don't think the choice of sample size in those studies was driven by consideration of 

uniformity of error. Another important consideration is keeping the new-prediction error from increasing 

substantially. It's easy to show (using Item 3 of the spreadsheet for a subject's true value) that increasing 

the number of subjects by 50 for each regressor after the first will ensure the new-prediction error is no 

more than 1% larger than the typical error. No worry there, if you use 100 subjects per regressor. 

 HOW MANY DIGITS? 

 
Stats programs routinely crank out 8-figure accuracy for computed statistics. Your data are hardly ever 

good enough to justify that sort of precision. In any case, too many digits make data hard to comprehend, 

and most people hate numbers! So when you present your statistics in print or on a slide, it's important to 

show as few digits as possible. 

Most statistics need either two significant digits (the first two digits), or two decimal places when the number 

is less than 1.0: 

http://www.sportsci.org/resource/stats/relyappl.html#samplerely
http://www.sportsci.org/resource/stats/relyappl.html#sscomprely
http://www.sportsci.org/resource/stats/relyappl.html#sscomprely
http://www.sportsci.org/resource/stats/relyappl.html#excel
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Percentages: 73%, 7.3%, 0.73% 

Correlations: 0.97, 0.23, 0.05 

Relative risks or odds ratios: 12, 2.4, 0.64 

Effect sizes: 2.6, 0.51, 0.07 

SDs usually need two significant digits. The mean must match the precision of the SD: 

23500 ± 1300 (not 23538 ± 1341 etc.) 

  2350 ± 130 

    235 ± 13 

   2.35 ± 0.13 

 0.235 ± 0.013 

The SD in descriptive statistics for height, weight, and age can often be shown with just one significant 

digit. After all, it doesn't really matter whether your subjects were 67 ± 5 or 67.3 ± 5.4 kg in weight: 

height: 178 ± 7 cm 

weight: 67 ± 5 kg 

age: 23 ± 4 y 

Naturally, if weight was an outcome variable, you would need to show two significant figures. 

Avoid p values, but if you have to give in to the demands of a journal reviewer or editor who hasn't seen the 

Light, show no more than two significant digits: p = 0.007, 0.04, 0.35. See later for more about p values and 

statistical significance. 

 MEAN ± SD or MEAN ± SEM? 

 
The standard deviation (SD) represents variation in the values of a variable, whereas the standard error of 

the mean (SEM) represents the spread that the mean of a sample of the values would have if you kept 

taking samples. So the SEM gives you an idea of the accuracy of the mean, and the SD gives you an idea 

of the variability of single observations. The two are related: SEM = SD/(square root of sample size). 

Some people think you should show SEMs with means, because they think it's important to indicate how 

accurate the estimate of the mean is. And when you compare two means, they argue that showing the 

SEMs gives you an idea of whether there is a statistically significantdifference between the means. All very 

well, but here's why they're heading down the wrong track: 

 For descriptive statistics of your subjects, you need the SD to give the reader an idea of 

the spread between subjects. Showing an SEM with the mean is silly. 

 When you compare group means, showing SDs conveys an idea of the magnitude of the difference 

between the means, because you can see how big the difference is relative to the SDs. In other 

words, you can see how big the effect size is. 

 It's important to visualize the SDs when there are several groups, because if the SDs differ too 

much, you may have to use log transformation or rank transformation before you compute 

confidence limits or p values. If the number of subjects differs between groups, the SEMs won't give 

you a direct visual impression of whether the SDs differ. 

 If you think it's important to indicate statistical significance, show p values or confidence limits of the 

outcome statistic That's more accurate than showing SEMs. Besides, does anyone know how much 

SEMs have to overlap or not overlap before you can say the difference is significant? And does 

anyone know that the amount of overlap or non-overlap depends on the relative sample sizes? 

http://www.sportsci.org/resource/stats/pvalues.html
http://www.sportsci.org/resource/stats/pvalues.html
http://www.sportsci.org/resource/stats/generalize.html#more
http://www.sportsci.org/resource/stats/simple.html#spread
http://www.sportsci.org/resource/stats/effect.html
http://www.sportsci.org/resource/stats/logtrans.html
http://www.sportsci.org/resource/stats/nonparms.html
http://www.sportsci.org/resource/stats/generalize.html#more
http://www.sportsci.org/resource/stats/pvalues.html
http://www.sportsci.org/resource/stats/generalize.html#more
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 Most importantly, when you have means for pre and post scores in a repeated-

measures experiment, the SEMs of these means do NOT give an impression of statistical 

significance of the change--a subtle point that challenges many statisticians. So if the SEMs don't 

show statistical significance in experiments, what's the point of having them anywhere else? 

 

Here's a figure to illustrate why SEMs don't convey statistical significance. It's for imaginary data in 

an experiment to increase jump height. The change in height is significant (p=0.03) when the 

measurement of jump height has high reliability, but not significant (p=0.2) when the reliability is low. 

But the SEMs are the same in both cases: 

 

 The SEMs of the post-pre change scores in a treatment and control group would indicate statistical 

significance. But if you show the change scores, you should show the confidence interval for the 

change, not the SEM. You should also show the SD of the change scores for the treatment and 

control groups, because a substantial increase in the SD of the change scores in a treatment group 

relative to a control group indicates individual responses to the treatment. SEMs of the change 

scores would alert you to the possibility of individual responses only if the sample size was the 

same in both groups. 

So when you see SEMs in a publication, smile, then mentally convert them into SDs to see how big the 

differences are between the groups. For example, if there are 25 subjects in a group, increase the size of 

the SEM by a factor of 5 (= square root of 25) to turn it into an SD. 

The bottom line: never show SEMs. Never. Trust me. 

Here endeth precision of measurement and summarizing data. On the next page we start generalizing to a 

population. 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.sportsci.org/resource/stats/repanova.html
http://www.sportsci.org/resource/stats/repanova.html
http://www.sportsci.org/resource/stats/relyappl.html#individ
http://www.sportsci.org/resource/stats/generalize.html
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GENERALIZING TO A POPULATION

 

You have a bunch of numbers for a sample of subjects. But people don't really want to know about your 

sample, which was a one-off set of observations that will never be taken again. People are much more 

interested in what you can say about the population from which your sample was drawn. Why? Because 

things that are true for the population are true for a lot more people than just for your sample. Hence the 

second major purpose of statistics: generalizing from a sample to a population. It's also known as making 

inferences about a population on the basis of a sample. By the way, the term population doesn't mean the 

entire population of a country. It just means everyone in a well-defined group; for example, young adult 

male trained distance runners. 

I deal first with confidence limits, which are the simplest and best way to understand 

generalization. Bootstrapping, meta-analysis, and Bayesian analysis are applications of confidence 

limits that I include on this page. On the next page are the related concepts of p values and statistical 

significance, followed by type I and II errors and a mention of bias. You can also download 

a slideshow that deals with all the material on these three pages, and more. 

The second section is devoted to how we use statistical models or tests to generalize the relationships 

between variables. To generalize properly you need a sample of adequate size, so I deal with methods 

for estimating sample size in the final section. 

 

Generalizing to a Population: CONFIDENCE LIMITS

 

 GENERALIZING VIA CONFIDENCE LIMITS

 
What can you say about the population when all you've got is a sample? Well, to start with, the value of a 

statistic (e.g. a correlation coefficient) derived from a sample is obviously one estimate of the value in the 

population. But the sample is only an approximation for the population, so the statistic is also only an 

approximation. If you drew a different sample, you'd get a different value. 

The only way you can really get the population value is to measure everyone in the population. Even if that 

was possible, it would be a waste of resources. But it is possible to use your sample to calculate a range 

within which the population value is likely to fall. "Likely" is usually taken to be "95% of the time," and the 

range is called the 95% confidence interval. The values at each end of the interval are called 

the confidence limits. All the values between the confidence limits make up the confidence interval. You 

can use interval and limitsalmost interchangeably. 

Learn this plain-language definition: the confidence interval is the likely range of the true value. Note 

that there is only one true value, and that the confidence interval defines the range where it's most likely to 

be. The confidence interval is NOT the variability of the true value or of any other value between subjects. It 

is nothing like a standard deviation. If there are individual differences in the outcome, then there is more 

than one true value, but we'll deal with that later. 

Another important concept embodied in confidence limits is precision of estimation. The wider the 

confidence interval, the less the precision. Research is all about getting adequate precision for things like 

a correlation coefficient, a difference in the mean between groups, the change in a mean following a 

treatment, and so on. 

 

http://www.sportsci.org/resource/stats/pvalues.html
http://www.sportsci.org/resource/stats/errors.html
http://www.sportsci.org/resource/stats/errors.html#slide
http://www.sportsci.org/resource/stats/models.html
http://www.sportsci.org/resource/stats/samplesize.html
http://www.sportsci.org/resource/stats/procmixed.html#indiff
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 An Example

 
Suppose you observed a correlation of 0.68 between height and weight of 

64 healthy undergraduate females. The 95% confidence limits are 0.52 

and 0.79, which means that there's a 95% chance that the correlation 

between more-or-less all healthy undergraduate females is between 0.52 

and 0.79. The figure shows it graphically. The confidence interval is the 

length of the line between the limits. You would report this result formally 

in a research paper as follows: the correlation between height and weight 

was 0.68; the 95% confidence interval was 0.52 to 0.79. I prefer the 

following less formal rendition: the correlation... was 0.68, and the likely range was 0.52 to 0.79. 

Notice that the confidence limits in the above example are not spaced equally on each side of the observed 

value. That happens with non-normally distributed statistics like the correlation coefficient. Most other 

statistics are normally distributed, so the observed value falls in the middle of the confidence interval. For 

example, an observed enhancement in performance of 2.3% could have confidence limits of 1.3 to 3.3%. In 

such cases, you can use a ± sign to express the outcome in the following way: the enhancement was 2.3%, 

and the likely range (or confidence interval or limits) was ±1.0%. Of course, you mean by this that the limits 

are 2.3-1.0 and 2.3+1.0. 

The lower and upper confidence limits need to be interpreted separately. The lower (or numerically smaller) 

limit shows how small the effect might be in the population; the upper limit shows how large the effect might 

be. Of course, you'll never know whether it really is that small or big unless you go out and measure the 

whole population. Or more subjects, anyway. Which brings us to the next important point: the more 

subjects, the narrower the confidence interval. 

 Effect of Sample Size on the Confidence Interval

 
Here's a figure showing how the width of the confidence interval depends on the number of subjects, for a 

correlation coefficient. It's the sort of thing you would get if you took bigger and bigger samples from a 

population. 

 

Notice that you can't say anything useful about the population correlation when the sample has only 4 

subjects. Already with 16 subjects you get the idea that it could be moderately positive. With 64 subjects 

the correlation is definitely positive and probably large, although it could also be moderate. The sample of 

256 nails it as a large effect, and 1024 subjects give too much precision. The conclusions I have shown in 

the above figure are only approximate. Since drawing this figure, I have come up with an exact approach to 

making conclusions like probably large. See below. 

 The Confidence Interval and Statistical Significance

 
If the confidence interval does not overlap zero, the effect is said to be statistically significant. In the 

above figure, the results for the sample sizes of 64, 256, and 1024 are all statistically significant, whereas 

the other results are not statistically significant. We can also define statistical significance using something 

called a p value, but I'll deal with that on the next page. 

http://www.sportsci.org/resource/stats/generalize.html#calculate
http://www.sportsci.org/resource/stats/pvalues.html
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We have a couple of plain-language ways of talking about something that is statistically significant: we say 

that the true value is unlikely to be zero, or that there is a real effect. These aren't bad ways to think about 

statistical significance, and you can sort of understand them by looking at the above figure, but they're not 

strictly correct. After all, the true value of something is never exactly zero anyway. I'll pick this issue up on 

the next page, under hypothesis testing. 

The value for a statistic corresponding to no effect in the population is called the null value. For 

correlations and changes in the mean, the null value is zero. If the outcome statistic is a relative risk or 

odds ratio, the null value is 1 (equal risk or odds). So for these statistics, the result is statistically significant 

if the confidence interval does not overlap 1. 

 A Spreadsheet for Confidence Limits

 
To calculate confidence limits for a statistic, a stats program works out the variation between subjects, then 

estimates how that variation would translate into variation in your statistic, if you kept taking samples and 

measuring the statistic. (You don't have to take extra samples to get the variation from sample to sample.) 

When you tack that variation onto the value of your sample statistic, you end up with the confidence 

interval. The calculation requires some important simplifying assumptions, which I will deal with later. 

Unfortunately, some stats programs don't provide confidence limits, but they all provide p values. I've 

therefore made a spreadsheet to calculate confidence limits from a p value, as explained on the next page. 

The calculation works for any normally distributed outcome statistic, such as the difference between means 

of two groups or two treatments. I've included calculations for confidence limits of relative risks and odds 

ratios, correlations, standard deviations, and comparison (ratio) of standard deviations. 

I've also added columns to give chances of clinically or practically important effects. Make sure you come to 

terms with this stuff. It is more important than p values. 

Update Oct 2007: the spreadsheet now generates customizable clinical and mechanistic inferences, 

consistent with an article on inferences in Sportscience in 2005. The inferences are also consistent with 

an article on sample-size estimation in Sportscience in 2006. 

Spreadsheet for confidence limits and inferences: Download 

 Bootstrapping (Resampling) 

 
Another way of getting confidence limits, when you have a reasonable sample size, is by the wonderful new 

technique of bootstrapping. It's a way of calculating confidence intervals for virtually any outcome statistic. 

It's tricky to set up, so you use it only for difficult statistics like the difference between two correlation 

coefficients for the same subjects. And you'll need an expert with a high-powered stats program to help you 

do it. 

For example, you might want to use a fitness test in a large study, so you do a pilot first to see which of two 

tests is better. The tests might be submaximal exercise tests to determine maximum oxygen uptake. 

"Better" would mean the test with higher validity, in other words the test with the higher correlation with true 

maximum oxygen uptake. So you might get a sample of 20 subjects to do the two tests and a third maximal 

test for true maximum oxygen uptake. The validity correlations turn out to be 0.71 and 0.77. Sure, use the 

test with the higher correlation, but what if it's more difficult to administer? Now you begin to wonder if the 

tests are really that different. The difference is 0.06. That's actually a trivial difference, and if it was the real 

difference, it wouldn't matter which test you used. But the observed difference is never the real difference, 

and that's why we need confidence intervals. If the confidence interval was 0.03 to 0.09, you'd be satisfied 

that one test is a bit better than another, but that it still doesn't really matter, and you would choose the 

easier test. If the confidence interval was -0.11 to 0.23, you couldn't be confident about which test is better. 

The best decision then would be to test more subjects to narrow down the confidence interval. 

http://www.sportsci.org/resource/stats/pvalues.html#hypothesis
http://www.sportsci.org/resource/stats/modelsdetail.html#calconf
http://www.sportsci.org/resource/stats/pvalues.html#clpv
http://www.sportsci.org/resource/stats/pvalues.html#clinical
http://www.sportsci.org/jour/05/ambwgh.htm
http://www.sportsci.org/2006/wghss.htm
http://www.sportsci.org/resource/stats/xcl.xls
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Anyway, bootstrapping is how you can get the confidence interval. The term bootstrapping refers to the old 

story about people lifting themselves off the ground by pulling on the backs of their own boots. A similar 

seemingly impossible thing occurs when you resample (to describe it more formally) to get confidence 

intervals. Here's how it works. 

For a reasonably representative sample of maybe 20 or more subjects, you can recreate (bootstrap) the 

population by duplicating the sample endlessly. Sounds immoral, if not impossible, but simulations have 

shown that it works! Next step is to draw, say, 1000 samples from this population, each of the same size as 

your original sample. In any given sample, some subjects will appear twice or more, while others won't be 

there at all. No matter. Next you calculate the values of the outcome statistic for each of these samples. In 

our example above, that would be the difference between the correlations. Finally, you find the middle 95% 

of the values (i.e. the 2.5th percentile and the 97.5th percentile). That's the 95% confidence interval for your 

outcome! Cool, eh? 

  

The median value from your 1000 samples should be virtually the same as the value from the original 

sample. If it's not, something is wrong. Sometimes the variables have to be transformed in some way to 

get over this problem. For example, to get the confidence interval for the difference between correlation 

coefficients, you first have to convert the correlations using something called the Fisher z transformation: 

z = 0.5log[(1 + r)/(1 - r)]. This equation looks horribly complicated, but all it does is make the correlations 

extend out beyond the value 1.0. It makes them behave like normally distributed variables. 

How do you "duplicate endlessly" to recreate the population? Actually you don't duplicate the data set. If 

your original sample had 20 observations, you use a random number generator in the stats program to 

select a sample of 20 from these 20. Then you do it again, and again, and again... 

At the moment I don't know of a good rule to decide when a sample is big enough to use bootstrapping. 

Twenty observations seems to be OK. Note, though, that if you have subgroups in your data set that are 

part of the outcome statistic, you need at least 20 in each subgroup. For example, if you wanted to 

compare a correlation in boys and girls, you would need at least 20 boys and 20 girls. 

And now for a test of your understanding. If you can recreate the population by duplicating the sample 

endlessly, why bother with all that resampling stuff? Why not just work out the value of the statistic you 

want from say a one-off sample of a million observations taken from this population? With a million 

observations, it will be really accurate! Answer: Well, ummm... the value you calculate from a million 

observations will be almost exactly the same as the value from your original sample of 20. You're no better 

off. OK, it was a silly question. 

 Meta-Analysis

 
I deal with meta-analysis here, because it is an application of confidence intervals. Meta-analysis is literally 

an analysis of analyses, which is near enough to what it is really: a synthesis of all published research on a 

particular effect (e.g. the effect of exercise on depression). The aim is to reach a conclusion about the 

magnitude of the effect in the population. 

The finding in a meta-analytic study is the mean effect of all the studies, with an overall confidence interval. 

In deriving the mean, more weight is given to studies with better designs: more subjects, proper random 

selection from the population, proper randomization to any experimental and control groups, double 

blinding, and low dropout rate. Studies that don't meet enough criteria are sometimes excluded outright 

from the meta-analysis. 

Whenever you read a meta-analysis involving longitudinal (experimental) studies, check to make sure the 

statistician used the correct standard deviation to calculate the effect size. It should always be the average 

standard deviation of the before and/or after scores. Some statisticians have used the standard deviation of 

the before-after difference score, which can make the effects look much bigger than they really are. 
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 Bayesian Analysis

 
Bayesian analysis is a kind of meta-analysis in which you combine observed data with your prior 

belief about something and end up with a posterior belief. In short, it's a way to update your belief. 

Clinicians use this approach informally when they try to diagnose a patient's problem. They have a belief 

about possible causes of the problem, and they probe for symptoms, test for signs of possible diseases, 

and order blood tests or scans or whatever to get data that will make their belief in one cause much greater 

than other possible causes. Fine, and no-one disputes the utility of this approach in the clinical setting with 

an individual patient or client. The disputes arise when statisticians try to apply it to the analysis of research 

data from a sample of a population. Let's start with the usual approach (also known as 

the frequentist approach) to such data, then see how a Bayesian would handle it. 

Suppose you're interested in the effect of a certain drug on performance. You study this problem by 

conducting a randomized controlled trial on a sample of a population. You end up with confidence limits for 

the true effect of the drug in the population. If you're a frequentist you publish the confidence limits. But if 

you're a Bayesian, you also factor in your prior belief about the efficacy of the drug, and you 

publish credibility limits representing your posterior (updated) belief. For example, you might have 

believed the drug had no effect (0.0%), and you were really skeptical, so you gave this effect confidence 

limits of -0.5% to +0.5%. You then did the study and found a positive effect of 3.0%, with confidence limits 

of 1.0% to 5.0%. Combine those with your prior belief and you end up with a posterior belief that the effect 

of the drug is 0.6%, with confidence limits of -1.0% to 3.2%. Let's assume a marginal effect is 1%, a small 

effect is 3%, and a moderate effect is 5%. A Bayesian concludes (from the credibility limits of -1.0% to 

3.2%) that the drug has anything from a marginal negative effect to a small positive effect. A frequentist 

concludes (from the confidence limits of 1.0% to 5.0%) that the drug has anything from a marginal positive 

to a moderate positive effect. 

There are formal procedures for combining your prior belief with your data to get your posterior belief. In 

fact, the procedure works just like a meta-analysis of two studies: the first study is the one you've just done 

to get an observed effect with real data; the other "study" is your prior belief about what the effect was. The 

observed effect and your belief are combined with weighting factors inversely proportional to the square of 

the widths of their confidence intervals. For example, if you have a very strong prior belief, your confidence 

(= credibility) interval for your belief will be narrow, so only a markedly different observed effect with a 

narrow confidence interval will change your belief. On the other hand, if you are not at all sure about the 

effect, your confidence interval for your prior belief will be wide, so the confidence limits for your posterior 

belief won't be much different from those provided by the data. To take this example to an extreme, if you 

have no prior belief, the posterior confidence limits are identical to those provided by the data. 

A positive aspect of the Bayesian approach is that it encapsulates the manner in which we assimilate 

research findings. New evidence that agrees with our preconceived notions reinforces our beliefs, whereas 

we tend to disregard evidence that flies in the face of our cherished prejudices or has no apparent 

mechanism. Sure, but even as a frequentist you can tackle these issues qualitatively in the Discussion 

section of your paper. If you try to quantify your prior belief, you run into two problems. First, your belief and 

the real data are combined with weighting factors, but they are otherwise on an equal footing. That's 

acceptable to a frequentist only if it's quite clear that the outcome of the Bayesian analysis is still only a 

belief, not a real effect. Secondly, exactly how do you convert a belief into a quantitative effect, and how do 

you give it confidence limits? (Bayesians give their belief a complete probability distribution, but the 

principle is the same.) You could--and probably do--base the belief on the results of other studies, but you 

might just as well meta-analyze these other studies to get your prior "belief". In that case, though, your 

posterior "belief" will be identical to a meta-analysis of all the studies, including the one you've just done. In 

other words, it's not a Bayesian analysis any more. 

Bayesian analysis may be justified where a decision has to be made with limited real data. The prior belief 

could be the average belief of several experts. When I hear of a specific example, I will update this page. 

Meanwhile, click here for a response to this section from Mike Evans, a Bayesian. 

 

http://www.sportsci.org/resource/stats/bayesview.html
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 P VALUES AND STATISTICAL SIGNIFICANCE

 
The traditional approach to reporting a result requires you to say whether it is statistically significant. You 

are supposed to do it by generating a p value from a test statistic. You then indicate a significant result 

with "p<0.05". So let's find out what this p is, what's special about 0.05, and when to use p. I'll also deal with 

the related topics of one-tailed vs two-tailed tests, and hypothesis testing. 

 What is a P Value? 

 
It's difficult, this one. P is short for probability: the probability of getting something more extreme than your 

result, when there is no effect in the population. Bizarre! And what's this got to do with statistical 

significance? Let's see. 

I've already defined statistical significance in terms of confidence intervals. The other approach to statistical 

significance--the one that involves p values--is a bit convoluted. First you assume there is no effect in the 

population. Then you see if the value you get for the effect in your sample is the sort of value you would 

expect for no effect in the population. If the value you get is unlikely for no effect, you conclude there is an 

effect, and you say the result is "statistically significant". 

Let's take an example. You are interested in the correlation between two things, say height and weight, and 

you have a sample of 20 subjects. OK, assume there is no correlation in the population. Now, what are 

some unlikely values for a correlation with a sample of 20? It depends on what we mean by "unlikely". Let's 

make it mean "extreme values, 5% of the time". In that case, with 20 subjects, all correlations more positive 

than 0.44 or more negative than -0.44 will occur only 5% of the time. What did you get in your sample? 

0.25? OK, that's not an unlikely value, so the result is not statistically significant. Or if you got -0.63, the 

result would be statistically significant. Easy! 

But wait a minute. What about the p value? Yes, umm, well... The problem is that stats programs don't give 

you the threshold values, ±0.44 in our example. That's the way it used to be done before computers. You 

looked up a table of threshold values for correlations or for some other statistic to see whether your value 

was more or less than the threshold value, for your sample size. Stats programs could do it that way, but 

they don't. You want the correlation corresponding to a probability of 5%, but the stats program gives you 

the probability corresponding to your observed correlation--in other words, the probability of something 

more extreme than your correlation, either positive or negative. That's the p value. A bit of thought will 

satisfy you that if the p value is less than 0.05 (5%), your correlation must be greater than the threshold 

value, so the result is statistically significant. For an observed correlation of 0.25 with 20 subjects, a stats 

package would return a p value of 0.30. The correlation is therefore not statistically significant. 

Phew! Here's our example summarized in a diagram: 

 

The curve shows the probability of getting a particular value of the correlation in a sample of 20, when the 

correlation in the population is zero. For a particular observed value, say 0.25 as shown, the p value is the 

probability of getting anything more positive than 0.25 andanything more negative than -0.25. That 

probability is the sum of the shaded areas under the probability curve. It's about 30% of the area, or a p 

value of 0.3. (The total area under a probability curve is 1, which means absolute certainty, because you 

have to get a value of some kind.) 

http://www.sportsci.org/resource/stats/generalize.html#ciss
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Results falling in that shaded area are not really unlikely, are they? No, we need a smaller area before we 

get excited about the result. Usually it's an area of 5%, or a p value of 0.05. In the example, that would 

happen for correlations greater than 0.44 or less than -0.44. So an observed correlation of 0.44 (or -0.44) 

would have a p value of 0.05. Bigger correlations would have even smaller p values and would be 

statistically significant. 

 Test Statistics

 
The stats program works out the p value either directly for the statistic you're interested in (e.g. a 

correlation), or for a test statistic that has a 1:1 relationship with the effect statistic. A test statistic is just 

another kind of effect statistic, one that is easier for statisticians and computers to handle. Common test 

statistics are t, F, and chi-squared. You don't ever need to know how these statistics are defined, or what 

their values are. All you need is the p value, or better still, the confidence limits or interval for your effect 

statistic. 

 P Values and Confidence Intervals

 
Speaking of confidence intervals, let's bring them back into the 

picture. It's possible to show that the two definitions of statistical 

significance are compatible--that getting a p value of less than 0.05 is 

the same as having a 95% confidence interval that doesn't overlap 

zero. I won't try to explain it, other than to say that you have to slide 

the confidence interval sideways to prove it. But make sure you are 

happy with this figure, which shows some examples of the relationship 

between p values and 95% confidence intervals for observed 

correlations in our example of a sample of 20 subjects. 

The relationship between p values and confidence intervals also provides us with a more sensible way to 

think about what the "p" in "p value" stands for. I've already said that it's the probability of a more extreme 

(positive or negative) result than what you observed, when the population value is null. But hey, what does 

that really mean? I get lost every time I try to wrap my brain around it. Here's something much better: if your 

observed effect is positive, then half of the p value is the probability that the true effect is negative. For 

example, you observed a correlation of 0.25, and the p value was 0.30. OK, the chance that the true value 

of the correlation is negative (less than zero) is 0.15 or 15%; or you can say that the odds of a negative 

correlation are 0.15:0.85, or about 1 to 6 (1 to 0.85/0.15). Maybe it's better to it turn around and talk about a 

probability of 0.85 (= 1 - p/2), or odds of 6 to 1, that the true effect is positive.Here's another example: you 

observed an increase in performance of 2.6%, and the p value was 0.04, so the probability that 

performance really did increase is 0.98, or 49 to 1. Check your understanding by working out how to 

interpret a p value of exactly 1. 

So, if you want to include p values in your next paper, here is a new way to describe them in the Methods 

section: "Each p value represents twice the probability that the true value of the effect has any value with 

sign opposite to that of the observed value." I wonder if reviewers will accept it. In plain language, if 

you observe a positive effect, 1 - p/2 is the probability that the true effect is positive. But even with this 

interpretation, p values are not a great way to generalize an outcome from a sample to a population, 

because what matters is clinical significance, not statistical significance. 

 Clinical vs Statistical Significance

 
As we've just seen, the p value gives you a way to talk about the probability that the effect has any positive 

(or negative) value. To recap, if you observe a positive effect, and it's statistically significant, then the true 

value of the effect is likely to be positive. But if you're going to all the trouble of using probabilities to 

describe magnitudes of effects, it's better to talk about the probability that the effect is substantially positive 

(or negative). Why? Because we want to know the probability that the true value is big enough to count for 
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something in the world. In other words, we want to know the probability of clinical or practical 

significance. To work out that probability, you will have to think about and take into account the smallest 

clinically important positive and negative values of the effect; that is, the smallest values that matter to 

your subjects. (For more on that topic, see the page about a scale of magnitudes.) Then it's a relatively 

simple matter to calculate the probability that the true value of the effect is greater than the positive value, 

and the probability that the true value is less than the negative value. 

I have now included the calculations in the spreadsheet for confidence limits and likelihoods. I've called the 

smallest clinically important value a "threshold value for chances [of a clinically important effect]". You have 

to choose a threshold value on the basis of experience or understanding. You also have to include the 

observed value of the statistic and the p value provided by your stats program. For changes or differences 

between means you also have to provide the number of degrees of freedom for the effect, but the exact 

value isn't crucial. The spreadsheet then gives you the chances (expressed as probabilities and odds) that 

the true value is clinically positive (greater than the smallest positive clinically important value), clinically 

negative (less than the negative of the smallest important value), and clinically trivial (between the 

positive and negative smallest important values). The spreadsheet also works out confidence limits, as 

explained in the next section below. 

Use the spreadsheet to play around with some p values, observed values of a statistic, and smallest 

clinically important values to see what the chances are like. I've got an example there showing that a p 

value of 0.20 can give chances of 80%, 15% and 5% for clinically positive, trivial, and negative values. 

Wow! It's clear from data like these that editors who stick to a policy of "publishable if and only if p<0.05" 

are preventing clinically useful findings from seeing the light of day.    

I have written two short articles on this topic at the Sportscience site. The first article introduces the topic, 

pretty much as above. The second article summarizes a Powerpoint slide show I have been using for a 

seminar with the title Statistical vs Clinical or Practical Significance, in which I explain hypothesis testing, P 

values, statistical significance, confidence limits, probabilities of clinical significance, a qualitative scale for 

interpreting clinical probabilities, and some examples of how to use the probabilities in practice. Download 

the presentation (91 KB) by (right-)clicking on this link. View it as a full slide show so you see each slide 

build. 

 Confidence Limits from a P Value

 
Stats programs often don't give you confidence limits, but they always give you the p value. So here's a 

clever way to derive the confidence limits from the p value. It works for differences between means in 

descriptive or experimental studies, and for any normally distributed statistic from a sample. Best of all, it's 

on a spreadsheet! I explain how it works in the next paragraph, but it's a bit tricky and you don't have to 

understand it to use the spreadsheet. Link back to the previous page to download the spreadsheet. 

I'll explain with an example. Suppose you've done a controlled experiment on the effect of a drug on time to 

run 10,000 m. Suppose the overall difference between the means you're interested in is 46 seconds, with a 

p value of 0.26. From the definition of the p value (see top figure on this page), we can draw a normal 

probability distribution centered on a difference of 0 seconds, such that there is an area of 0.26/2 = 0.13 to 

the right of 46 and a similar area to the left of -46. Or to put it another way, the area between -46 and 46 is 

1-0.26 = 0.74. If we now shift that distribution until it's centered over 46, it represents the probability 

distribution for the true value. We know that the chance of the true value being between 0 and 92 is 0.74, 

so now all we need is the range that will make the chance 0.95, and that will be our 95% confidence 

interval. To work it out, we use the fact that the distribution is normal. That allows us to calculate how many 

standard deviations (also known as the z score) we have to go on each side of the mean to enclose 0.74 of 

the area under the normal curve. We get that from tables of the cumulative normal distribution, or the 

function NORMSINV in an Excel spreadsheet. Answer: 1.13 standard deviations. Ah, but we know that 1.96 

standard deviations encloses 95% of the area, and because the 1.13 standard deviations represents 46 

seconds, our confidence interval must be -46(1.96/1.13) to +46(1.96/1.13), i.e. -34 to +126. 

http://www.sportsci.org/resource/stats/effectmag.html
http://www.sportsci.org/resource/stats/generalize.html#excel
http://www.sportsci.org/resource/stats/pvalues.html#clpv
http://www.sportsci.org/jour/0103/inbrief.htm
http://www.sportsci.org/jour/0201/wghprob.htm
http://www.sportsci.org/resource/stats/Statistical_vs_clinical.ppt
http://www.sportsci.org/resource/stats/generalize.html#calculate
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Fine, except that it's not really a normal distribution. With a finite number of subjects, it's actually a t 

distribution, so we have to use TINV in Excel. What's more, the 95% confidence limits are really a titch 

more than 1.96 standard deviations each side of the mean. Exactly how much more depends on the 

number of subjects, or more precisely, the number of degrees of freedom. With your own data, search 

around in the output from the analysis until you find the degrees of freedom for the error term or the 

residuals. Put it into the spreadsheet, along with the observed value of the effect statistic, and its p value 

(not the p value for the model or for an effect in the model, unless it is the statistic). If you can't find the 

number of degrees of freedom on the output, the spreadsheet tells you how to calculate it. And if you don't 

get it exactly right, don't worry: the confidence limits hardly change for more than 20 degrees of freedom. 

 One Tail or Two? 

 
Notice in the first figure on this page that the p value is calculated for both tails of the distribution of the 

statistic. That follows naturally from the meaning of statistical significance, and it's why tests of significance 

are sometimes called two tailed. In principle you could eliminate one tail, double the area of other tail, then 

declare statistical significance if the observed value fell within the one-tailed area. The result would be 

a one-tailed test. Your Type I error rate would still be 5%, but a smaller effect would turn out to be 

statistically significant. In other words, you would have more power to detect the effect. 

So how come we don't do all tests as one-tailed tests? Hmm... The people who support the idea of such 

tests--and they are a vanishing breed--argue that you can use it to test for, say, a positive result only if you 

have a good reason for believing beforehand that the outcome will be positive. I hope I am characterizing 

their position correctly, because I don't understand it. What is a "good reason"? It seems to me that you 

would have to be absolutely certain that the outcome would be positive, but in that case running the test for 

statistical significance is pointless! I therefore don't buy into one-tailed tests. If you have any doubts, revert 

to the confidence-interval view of significance: one-sided confidence intervals just don't make sense, but 

confidence limits equally placed on each side of the observed value is unquestionably a correct view. 

Except that... there is a justification for one-tailed tests after all. You just interpret the p value differently. P 

values for one-tailed tests are half those for two-tailed tests. It follows that the p value from a one-tailed test 

is the exact probability that the true value of the effect has opposite sign to what you have observed, and 1 

- p is the probability that the true value of the effect has the same sign, as I explained above. Hey, we don't 

have to muck around with p/2. So here's what you could write in the Methods section of your paper: "All 

tests of significance are one-tailed in the direction of the observed effect. The resulting p values represent 

the probability that the true value of the effect is of sign opposite to the observed value." Give it a go and 

see what happens. Such a statement would be anathema to reviewers or statisticians who assert that an 

observed positive result is not a justification for doing a one-tailed test for a positive result. They would 

argue that you are downgrading the criterion for deciding what is "statistically significant", because you are 

effectively performing tests with a Type I error of 10%. Fair enough, so don't mention statistical significance 

at all. Just show 95% confidence limits, and simply say in the Methods: "Our p values, derived from one-

tailed tests, represent the probability that the true value of the effect is of sign opposite to the observed 

value." 

But as I discussed above, the probability that an effect has a substantially positive (or negative) value is 

more useful than the probability that the effect has any positive (or negative) value. Confidence limits are 

better than one-tailed p values from that point of view, which is why you should always include confidence 

limits. 

 Why 0.05? 

 
What's so special about a p value of 0.05, or a confidence interval of 95%? Nothing really. Someone 

decided that it was reasonable, so we're now stuck with it. P < 0.01 has also become a bit of a tradition for 

declaring significance. Both are hangovers from the days before computers, when it was difficult to 

calculate exact p values for the value of a test statistic. Instead, people used tables of values for the test 

statistic corresponding to a few arbitrarily chosen p values, namely 0.05, 0.01, and sometimes 0.001. 

http://www.sportsci.org/resource/stats/pvalues.html#pconf
http://www.sportsci.org/resource/stats/pvalues.html#pconf
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These values have now become enshrined as the threshold values for declaring statistical significance. 

Journals usually want you to state which one you're using. For example, if you state that your level of 

significance is 5% (also called an alpha level), then you're allowed to call any result with a p value of less 

than 0.05 significant. In many journals results in figures are marked with one asterisk (*) if p<0.05 and two 

(**) if p<0.01. 

Some researchers and statisticians claim that a decision has to be made about whether a result is 

statistically significant. According to this logic, if p is less than 0.05 

you have a publishable result, and if p is greater than 0.05, you 

don't.Here's a diagram showing the folly of this view of the world. One 

of these results is statistically significant (p<0.05), and the other isn't 

(p>0.05). Which is publishable? Answer: both are, although you'd 

have to say in both cases that more subjects should have been tested 

to narrow down the likely range of values for the correlation. And in 

case you missed the point, the exact p values are 0.049 and 0.051. Don't ask me which is which! 

Some journals persist with the old-fashioned practice of allowing authors to show statistically significant 

results with p<0.05 or p<0.01, and non-significant results with p>0.05. Exact p values convey more 

information, but confidence intervals give a much better idea of what could be going on in the population. 

And with confidence intervals you don't get hung up on p values of 0.06. 

 Hypothesis Testing

 
The philosophy of making a decision about statistical significance also spawned the practice of hypothesis 

testing, which has grown to the extent that some departments make their research students list the 

hypotheses to be tested in their projects. The idea is that you state anull hypothesis (i.e. that there is no 

effect), then see if the data you get allow you to reject it. Which means there is no effect until proved 

otherwise--like being innocent until proved guilty. This philosophy comes through clearly in such statements 

as "let's see if there is an effect". 

What's wrong here? Well, people may be truly innocent, but in nature effects are seldom truly zero. You 

probably wouldn't investigate something if you really believed there was nothing going on. So what really 

matters is estimating the magnitude of effects, not testingwhether they are zero. But that's only a 

philosophical issue. There are more important practical issues. Getting students to test hypotheses diverts 

their attention from the magnitude of the result to the magnitude of the p value. Read that previous 

sentence again, please, it's thatimportant. So when a student researcher gets p>0.05 and therefore 

"accepts the null hypothesis", s/he usually concludes erroneously that there is no effect. And if s/he gets 

p<0.05 and therefore "rejects the null hypothesis", s/he still has little idea of how big or how small the effect 

could be in the population. In fact, most research students don't even know they are supposed to be 

making inferences about population values of a statistic, even after they have done statistics courses. 

That's how hopelessly confusing hypothesis testing and p values are. 

"Let's see if there is an effect" isn't too bad, if what you mean is "let's see if there is a non-trivial effect". 

That's what people really intend. But a test for statistical significance does not address the question of 

whether the effect is non-trivial; instead, it's a test of whether the effect is greater than zero (for an 

observed positive effect). And it's easy to get a statistically significant effect that could be trivial, so 

hypothesis testing doesn't do a proper job. With confidence limits you can see immediately whether the 

effect could be trivial 

Research questions are more important than research hypotheses. The right question is "how big is the 

effect?" And I don't just mean the effect you observe in your sample. I mean the effect in the population, so 

you will have to show confidence limits to delimit the population effect. 
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 Using P Values

 
When I first published this book, I was prepared to concede that p values have a use when you report lots 

of effects. For example, with 20 correlations in a table, the ones marked with asterisks stand out from the 

rest. Now I'm not so sure about the utility of those asterisks. The non-significant results might be just as 

interesting. For example, if the sample size is large enough, a non-significant result means the effect can 

only be trivial, which is just as important as the effect being substantial. And if the sample size isn't large 

enough, a non-significant result with the lower confidence limit in the trivial region (e.g. r = 0.34, 95%CL = -

0.03 to 0.62) is arguably only a tad less interesting than a statistically significant result with the lower 

confidence limit still in the trivial region (e.g. r = 0.38, 95%CL = 0.02 to 0.65). So I think I'll harden my 

attitude. No more p values. 

By the way, if you do report p values with your outcome statistics, there is no point in reporting the value of 

the test statistic as well. It's superfluous information, and few people know how to interpret the magnitude of 

the test statistic anyway. But you must make sure you give confidence limits or exact p values, and 

describe the statistical modeling procedure in the Methods section. 

 

 GETTING IT WRONG

 
The words probability and confidence seem to come up a lot. You should be getting the message that few 

things are definite in our discipline, or in any empirical science. Sometimes we get it wrong. 

From the point of view of confidence intervals, getting it wrong is simply a matter of the population value 

being outside the confidence interval. I call it a Type O error. You can think of the "O" as standing either for 

"outside (the confidence interval)" or for "zero" (as opposed to errors of Type I and II, which it supersedes). 

For 95% confidence limits the Type O error rate is 5%, by definition. From the point of view of hypothesis 

testing, getting it wrong is much more complicated. You can be responsible for a false alarm or Type I error, 

and a failed alarm or Type II error. An entirely different way to get things wrong is to have bias in your 

estimate of an effect. This page ends with a link to download a PowerPoint slide presentation, in which 

I summarize and in some instances extend important points from these pages. 

 Type I Error

 
A level of significance of 5% is the rate you'll declare results to be significant when there are no 

relationships in the population. In other words, it's the rate of false alarms or false positives. Such things 

happen, because some samples show a relationship just by chance. 

For example, here are typical 95% confidence intervals for 20 samples of the 

same size for a population in which the correlation is 0.00. (The sample size is 

irrelevant.) Notice that one of the correlations is statistically significant. If that 

happened to be your study, you would rush into print saying that there is a 

correlation, when in reality there isn't. You would be the victim of a Type I error. 

Of course, you wouldn't know until others--or you--had tested more subjects and 

found a narrower confidence interval overlapping zero. 

Cumulative Type I and Type O Error Rates 

The only time you need to worry about setting the Type I error rate is when you look for a lot of effects in 

your data. The more effects you look for, the more likely it is that you will turn up an effect that seems 

bigger than it really is. This phenomenon is usually called the inflation of the overall Type I error rate, 

or the cumulative Type I error rate. So if you're going fishing for relationships amongst a lot of variables, 

and you want your readers to believe every "catch" (significant effect), you're supposed to reduce the Type 

I error rate by adjusting the p value downwards for declaring statistical significance. 

http://www.sportsci.org/resource/stats/errors.html#typeI
http://www.sportsci.org/resource/stats/errors.html#typeII
http://www.sportsci.org/resource/stats/errors.html#bias
http://www.sportsci.org/resource/stats/errors.html#slide
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The simplest adjustment is called the Bonferroni. For example, if you do three tests, you should reduce the 

p value to 0.05/3, or about 0.02. This adjustment follows quite simply from the meaning of probability, on 

the assumption that the three tests are independent. If the tests are not independent, the adjustment is too 

severe. 

Those of us who use confidence intervals rather than p values have to be aware that inflation of the Type 

O error also happens when we report more than one effect. For example, if there are two independent 

effects, the probability that at least one will be outside its confidence interval is about 10%. We could 

increase the width of our confidence intervals to bring the overall probability back to 5%. For example, 

Bonferroni-adjusted 95% confidence intervals for three effects would each be 98% confidence intervals. 

Adjusting the confidence intervals in this or some other way will keep the purists happy, but I'm not sure it's 

such a good idea. I prefer to see the raw 95% confidence intervals, and I prefer to make my own mental 

adjustment when there are lots of effects. I just look at the results and think to myself, OK, the population 

value might be outside the interval for one or two of those effects (depending on how many results are 

reported). The fact that the effects are reported in one publication is no justification for widening the 

confidence intervals, in my view. You might just as well argue that all the confidence intervals in the entire 

issue of the journal should be widened, to keep the cumulative error rate for the issue in check! And why 

stop with one issue... So I don't think confidence intervals or p values should be adjusted, but I know many 

will disagree. 

Why not use a lower p value all the time, for example a p value of 0.01, to declare significance? Surely that 

way only one in every 100 effects you test for is likely to be bogus? Yes, but it is harder to get significant 

results, unless you use a bigger sample to narrow down that confidence interval. In any case, you are 

entitled to stay with a 5% level for one or two tests, if they are pre-planned--in other words, if you set up 

the whole study just to do these tests. It's only when you tack on a lot of other tests afterwards (so-

called post-hoc tests) that you need to be wary of false alarms. 

Controlling the Type I error comes up a lot in analysis of variance, when you do comparisons between 

several groups or levels. For more insights see estimates and contrasts in one-way ANOVA and estimates 

and contrasts in repeated-measures ANOVA. 

 Type II Error

 
The other sort of error is the chance you'll miss the effect (i.e. declare that there is no significant effect) 

when it really is there. In other words, it's the rate of failed alarms or false negatives. Once again, the alarm 

will fail sometimes purely by chance: the effect is present in the population, but the sample you drew 

doesn't show it. 

The smaller the sample, the more likely you are to commit a Type II error, because the confidence interval 

is wider and is therefore more likely to overlap zero. Here's an example in which a Type II error has 

occurred for a correlation. Imagine you got this result: 

I've indicated where the population correlation is for this example, but of course, 

in reality you wouldn't know where it was. I've made the true correlation about 

0.40, which is well worth detecting. But it hasn't been detected, because the 

confidence interval overlaps zero. A big-enough sample size would have 

produced a confidence interval that didn't overlap zero, in which case you would 

have detected a correlation, so no Type II error would have occur red. Now, a 

test of your understanding: where would the population r have to be on the figure for a Type II error NOT to 

have been made? Answer: on or close to 0.00. 

The Type II error needs to be considered explicitly at the time you design your study. That's when you're 

supposed to work out the sample size needed to make sure your study has the power to detect anything 

useful. For this purpose the usual Type II error rate is set to 20%, or 10% for really classy studies. The 

power of the study is sometimes referred to as 80% (or 90% for a Type II error rate of 10%). In other words, 

the study has enough power to detect the smallest worthwhile effects 80% (or 90%) of the time. 

http://www.sportsci.org/resource/stats/ttest.html#contrasts
http://www.sportsci.org/resource/stats/threetrials.html#estimates
http://www.sportsci.org/resource/stats/threetrials.html#estimates
http://www.sportsci.org/resource/stats/samplesize.html
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Here's something interesting that no-one seems to mention: cumulative Type II error rate--in other words, 

the chance that you will miss at least one effect when you test for more than one. Is your head starting to 

spin? Mine is! Don't worry, just go back to confidence limits and the notion of cumulative Type O error. 

When you are looking at lots of effects, the near equivalent of inflated Type II error is the increased chance 

that any one of the effects will be bigger than you think it could be (bigger than its upper confidence limit). 

Come to think of it, the near equivalent of inflated Type I error is the increased chance that any one of the 

effects will be smaller than you think. 

 Bias

 
People use the term bias to describe deviation from the truth. That's the way we use the term in statistics, 

too: we say that a statistic is biased if the average value of the statistic from many samples is different from 

the value in the population. To put it simply, the value from a sample tends to be wrong. 

The easiest way to get bias is to use a sample that is in some way a non-random sample of the population: 

if the average subject in the sample tends to be different from the average person in the population, the 

effect you are looking at could well be different in the sample compared with the population. 

Some statistics are biased, if we calculate them in the wrong way. Using n instead of n-1 to work out 

a standard deviation is a good example. There is also bias in some reliability statistics. Building up a 

sample size in stages can also result in bias, as I describe in sample size on the fly. 

 SLIDES ON CONFIDENCE LIMITS

 
Click here to download a PowerPoint 97/98 set of 30 slides on the topic "Planning, Performing, and 

Publishing Research with Confidence Limits", which I presented on this topic at the annual meeting of the 

American College of Sports Medicine in Seattle, June 4 1999. If you have trouble downloading or opening 

the file, click here 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.sportsci.org/resource/stats/stdev.html
http://www.sportsci.org/resource/stats/relycalc.html#bias
http://www.sportsci.org/resource/stats/ssonthefly.html#bias
http://www.sportsci.org/resource/stats/conf_limits.ppt
http://www.sportsci.org/helpdown.html
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Generalizing to a Population: 

STATISTICAL MODELS 

 

 WHAT IS A MODEL? 

 
Can you see that women are usually different from men in certain characteristics? Can you see that taller 

people are heavier, in general? Can you see that participation rates differ between sports? Fine, you're 

already an expert in the use of models! All we're going to do now is formalize your intuitive understanding, 

and put numbers on everything. Let's hope we don't destroy your intuition in the process! 

What do these three examples have in common? Something affected by or related to something else? Yes, 

a model is a relationship between variables. The relationships we deal with are usually simple: women 

are shorter than men, by a fixed amount; body mass is proportional to height or maybe height2; the chance 

that any given person will participate in a particular sport is a simple function of age, sex, socio-economic 

status, or whatever. 

Inasmuch as models are relationships between variables, I could have dealt with them under the general 

heading of Summarizing Data, and in particular in the pages on effect statistics. Certainly, if our only aim 

was to characterize the relationship in a sample, then that's where these pages should have been. But we 

fit a model to data from a sample almost always to make a statement about the model in the population. 

That is, we want to make a statement about the precision of the estimate of the effect statistic(s) describing 

the model, using things likeconfidence limits and/or chances of clinical benefit (or P values and/or statistical 

significance, if you are stuck in the 20th Century). So I deal with models here, under the heading of 

Generalizing to a Population. Let's be clear, though: a model is another way of summarizing data using 

effect statistics. 

On the next pages I'll get more technical about how different kinds of variable produce different models. 

Meanwhile, let's take a sneak preview of a simple model. 

Here are some imaginary heights and weights of a sample of adults. As soon as 

you plot data like these, you want to draw a straight line through them. The straight 

line is the model. You decide you want to draw one, and the stats program does 

the rest. It finds the equation of the straight line that fits the data best. It also 

produces a correlation coefficient, which is a measure of how well the line fits (or, 

same thing, how close the relationship between height and weight comes to being 

a straight line). And, inasmuch as the data are a sample, the program even 

produces confidence limits for the line, or a p value for a test of whether there is a 

line in the population at all. In fact, statistical modeling and statistical testing mean the same thing. 

Is this all too easy, or what? It gets a bit more complicated for things like analysis of covariance, repeated 

measures categorical modeling, and so on, but the principle is the same. 

.  SIMPLE MODELS AND TESTS 

 

I was confused by the wide variety of models until I found a simple way of categorizing them. The trick is to 

think about the variables in the model as either numeric or nominal, and as 

either dependent or independent. 

You already know about numeric and nominal variables: numeric variables have numbers as values, and 

nominals have names or levels. Either type can be dependent or independent. The variable you're most 

interested in is known as the dependent variable, because it might be dependent on, or affected by, 

something else that you've measured, which is therefore an independent variable. For example people's 

http://www.sportsci.org/resource/stats/effect.html
http://www.sportsci.org/resource/stats/generalize.html#viacl
http://www.sportsci.org/resource/stats/pvalues.html#clinical
http://www.sportsci.org/resource/stats/correl.html
http://www.sportsci.org/resource/stats/generalize.html
http://www.sportsci.org/resource/stats/pvalues.html
http://www.sportsci.org/resource/stats/summarize.html
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weight (dependent variable) might depend on their height (independent variable). Independent is not a very 

good term, because you can have several independent variables, and they may not be independent of 

each other. So, a better term for independent variables is effects, because they have an effect on the 

dependent variable. They're also known as predictor or explanatory variables, for obvious reasons. A 

nominal predictor variable is also known as a grouping variable, because it divides the data up into 

groups. 

Now let's talk about the relationships between variables. I'm going to use a short-hand method to represent 

the relationship between a dependent and independent variable. For example, if I want to show that height 

affects weight, I will write: 

weight <= height 

The "<=" is a backwards-pointing arrow, by the way! Read the expression as "weight is affected by height". 

Sure, it would be more sensible to write height => weight, and read it as "height affects weight", but 

statisticians are used to seeing the dependent variable on the left. It goes back to writing things like 

Y = X + 1. We don't write X + 1 = Y (although we could). So in general, let's write 

dependent <= independent 

Now, if we just substitute nominal and numeric variables for the dependent and independent variables, we'll 

end up with four different simple models. Here they are, with their names: 

 numeric <= numeric  Linear Regression 

 numeric <= nominal  T Test and One-Way ANOVA 

 nominal <= nominal  Contingency Table 

 nominal <= numeric  Categorical Modeling  

I detail each model on the next four pages. 

 Linear Regression

 
Let's use the same example that I used to introduce the concept of statistical 

models. As you can see, data for two variables like weight and height scream out 

to have a straight line drawn through them. The straight line will allow us to predict 

any person's weight from a knowledge of that person's height. Obviously, the 

prediction won't be perfect, so we will also be able to say how strong the linear 

relationship is between weight and height, or how well the straight line fits the data 

(the goodness of fit). 

Here's how we represent the model: 

  model: numeric <= numeric 

  example: weight <= height 

You normally think about a straight line as Y = mX + c, where m is the slope and c is the intercept. The way 

I would write this relationship, using the above notation, is simply Y <= X. We don't have to worry about 

showing the constants, but the stats program worries about them. They're the parameters in the model. 

  

The Slope 

The most interesting parameter in a linear model is usually the slope. If the slope is zero, the line is flat, so 

there's no relationship between the variables. In the example, the slope is about 0.75 kg per cm (an 

increase in weight of 0.75 kg for each cm increase in height). We can also calculate the slope in two ways 

that don't have those ugly units (kg per cm). 

http://www.sportsci.org/resource/stats/linreg.html
http://www.sportsci.org/resource/stats/ttest.html
http://www.sportsci.org/resource/stats/continge.html
http://www.sportsci.org/resource/stats/categore.html
http://www.sportsci.org/resource/stats/models.html
http://www.sportsci.org/resource/stats/models.html
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One way is to calculate the percent change in weight per percent change in height. It's unusual, but 

sometimes it's the best way, especially for variables that need log transformation. The slope expressed as 

% per % comes directly out of the analysis of log-transformed variables. 

The other way to remove the units is to normalize the two variables by dividing their values by their 

standard deviations, then fit the straight line. The resulting slope is known as a standardized regression 

coefficient. It represents the change in weight, expressed as a fraction of the standard deviation, per 

standard deviation change in height. You can also generate it by multiplying the slope (in kg per cm) by the 

ratio of the standard deviations for height over the standard deviation for weight. In a simple linear 

regression, the value of the standardized regression coefficient is exactly the same as the correlation 

coefficient, and you can interpret its magnitude in the same way. In the example, the value is about 0.9, or 

a difference of 0.9 standard deviations in weight per change of one standard deviation in height. That's a 

really strong relationship! 

  

Goodness of Fit 

The stats program works out values for the slope and intercept (the parameters) that give the best fit. I'll 

explain how after I've dealt with all four simple models. Meanwhile, we want a measure of how good the fit 

is. The correlation coefficient is one such measure. Another way to represent the fit is to square the 

correlation coefficient, multiply it by 100, then call the result the percent of variance explained, or percent 

R2. For example, the R2 represents the proportion of variation in weight that can be attributed to height, 

when there is a linear relationship between weight and height. A correlation of 0.9 is equivalent to an R2 of 

0.81 or 81%. I'll explain more about goodness of fit in a few pages' time. 

The p value or the confidence interval for the correlation coefficient tell us how good the fit is likely to be in 

the population. The program can also give confidence intervals or p values for the slope and intercept. The 

correlation coefficient can be considered as a test statistic for whether the line fits the data at all. But stats 

programs can also produce another statistic for this purpose, called the F ratio. The values for F are quite 

different from those for r, but there is a one-to-one relationship between them, and the r and the F have the 

same p value for a given sample. 

 T Test and One-Way ANOVA

 

  model: numeric <= nominal 

  example: height <= sex  

In other words, if you know someone's sex, what does that tell you 

about their height? Or, how well do the height data fall into two 

groups when you label the values by sex? The test statistic for the 

test of whether sex has an effect on height is called Student's t, or 

just t. Hence the name of this model, the t test. 

When there are three or more levels for the nominal variable, a 

simple approach is to run a series of t tests between all the pairs of levels. For example, we might be 

interested in the heights of athletes in three sports, so we could run t test for each pair of sports. (Note that 

this approach is not the same as a paired t test. That comes later.) A more powerful approach is to analyze 

all the data in one go. The model is the same, but it is now called a one-way analysis of variance (ANOVA), 

and the test statistic is the F ratio. So t tests are just a special case of ANOVA: if you analyze the means of 

two groups by ANOVA, you get the same results as doing it with a t test. 

The term analysis of variance is a source of confusion for newbies. In spite of its name, ANOVA is 

concerned with differences between means of groups, not differences between variances. The name 

analysis of variance comes from the way the procedure uses variances to decide whether the means are 

different. A better acronym for this model would be ANOVASMAD (analysis of variance to see if means are 

different)! The way it works is simple: the program looks to see what the variation (variance) is within the 

groups, then works out how that variation would translate into variation (i.e. differences) between the 

groups, taking into account how many subjects there are in the groups. If the observed differences are a lot 
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bigger than what you'd expect by chance, you have statistical significance. In our example, there are only 

two groups, so variation between groups is just the difference between the means. 

I won't bother with trying to represent this model as an equation like Y = mX + c. Suffice to say that it can 

be done, simply by making an X variable representing sex that has the value 0 for females and 1 for males, 

say (or vice versa). So it is also a "linear" model, even though we don't normally think about it as a straight 

line. The parameters in the model are simply the mean for the females and the mean for the males. 

The spreadsheet for analysis of controlled trials includes a comparison of the means (and standard 

deviations) of two groups at baseline. You can use it for any tests of two independent groups, as in the 

above example.. Ignore all the stuff related to comparisons of changes in the mean in the two groups. 

  

Comparisons of Means 

 With a t test, the thing we're most interested in is, of course, a comparison of the two means. You should 

think about the best way to express the difference in the means for your data: raw units, percent difference, 

or effect size. And don't forget to look at and discuss the magnitude of the difference and the magnitude of 

its confidence limits. 

With three or more levels for the nominal variable, we can start asking interesting questions about the 

differences between pairs or combinations of means. Such comparisons of means 

are known as estimates or contrasts. For example, suppose we are exploring the 

relationship between training hours per week (the dependent variable) and sport 

(the nominal independent variable). Suppose sport has three levels: runners, 

cyclists, and swimmers, as shown. We can ask the question, are there differences 

overall between the sports? The answer would be given by the p value for sport in 

the model. And what about the difference between cycling and running? Yes, we 

can dial up the difference and look at its p value or confidence interval. We do that by subtracting the value 

for the parameter (the mean) for cycling from that for running, using the appropriate syntax in the stats 

program. We could even ask how different swimming was from the average of running and cycling, and so 

on. There's also a special kind of contrast (polynomials) you can apply if the levels are a numbered 

sequence and you want to describe a curve drawn through the values for each level. 

If you're expressing a difference between means as an effect size, the standard deviation to use in the 

calculation is the root mean square error (RMSE) in the ANOVA. An ANOVA is based on the assumption 

that the standard deviation in the same in all the groups, and the RMSE represents the estimate of that 

standard deviation. You can think of the RMSE as the average standard deviation for all of the groups. 

With lots of contrasts, the chance of any one of them being spuriously statistically significant--in other 

words, the overall chance of a Type I error--goes up. So stats programs usually have built-in ways 

of controlling the overall Type I error rate in an ANOVA. Basically they adjust the p value down for declaring 

statistical significance, although you don't see it like that on the printout. These methods have statisticians' 

names: Tukey, Duncan, Bonferroni... They're also known as post-hoc tests or simply post hocs. I don't use 

them, because I now use confidence limits and clinical significance rather than statistical significance, so I 

don't test anything. 

One approach to controlling the Type I error rate with multiple contrasts is simply not to perform the 

contrasts unless the overall effect is significant. In other words, you don't ask where the differences are 

between groups unless there is an overall difference between groups. Sounds reasonable, but wait a 

moment! If there is no overall statistically significant difference between groups, surely none of the 

contrasts will turn up significant? Yes, it can happen! There's jitter in the p values, and there's nothing to 

say that the p value for the overall effect is any more valid than the p value for individual contrasts. So if 

you've set up your study with a particular contrast in mind--a pre-planned contrast--go ahead and do that 

contrast, regardless of the p value for the overall effect. Performing the pre-planned contrast does not have 

to be contingent upon obtaining significance for the overall effect. Those of us who prefer confidence 

intervals to p values can understand why: the estimate of the difference between groups has a confidence 

interval that may or may not overlap zero, and the confidence interval for the overall effect (expressed in 
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some measure of goodness of fit) may or may not overlap zero. There is no need to reconcile the two. 

  

Goodness of Fit 

 What statistic do we use to talk about how well the ANOVA model fits the data? It's not used that 

frequently, but you can extract an R2 just like you do for a straight line. The R2 represents how well all the 

levels of the grouping (nominal) variable fit the data. More aboutgoodness of fit soon. 

 Contingency Table (Chi-Squared Test)

 

model: nominal <= nominal 

example: sport <= sex 

 

What effect does a kid's sex have on the kind of sport s/he likes? That's the sort of question we address 

with this model, as shown in the example of the sport preferences of a sample of boys and girls. 

The word contingency in the name of the model refers, I guess, to the relationship between the two 

variables. Table speaks for itself. The test for whether there is any relationship at all is known as the chi-

squared test, from the test statistic, chi squared (c2: this will come up as c2 if your browser doesn't show 

symbols). It's pretty obvious that there's a strong relationship in the example. Whether the relationship is 

significant would depend on the number of boys and girls. 

We don't normally think about parameters for this model, but they would be the probabilities of opting for 

each sport, for each sex. Goodness of fit is also not usually calculated, but various analogs of the 

correlation coefficient (e.g. the kappa coefficient) make their appearance occasionally. Those outcome 

measures that we have already met, the relative risk and odds ratio, make sense only for 2 x 2 tables or for 

comparing 2 x 2 cells in a bigger table. Most stats programs can calculate the confidence intervals for these 

outcome measures 

When you have more than two rows or columns in the table (e.g. the three sports above), the chi-squared 

test tells you whether there is any relationship, but it doesn't tell you where the differences are. Now, just as 

we can do pairwise tests for the different levels of a grouping variable in an ANOVA, we can in principle test 

for differences between frequencies of males and females in pairs of sports, or between one sport and the 

rest, or whatever. In the above example, it's clear that the "other" category does not differ between sexes 

(which is actually a comparison of "other" with basketball and football combined, if you think about it), 

whereas every other pairwise comparison looks like it could be different. The funny thing is, there is no 

tradition for doing such pairwise tests in a contingency table, or for controlling the type I error, not that I 

know of anyway. All that people do is state whether there is an effect overall or not, then eyeball the 

frequencies in the table and comment on where the biggest differences are. Strange... 
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 Categorical Modeling

 

model: nominal <= numeric 

example: sport <= height 

Another name for this model is discriminant function analysis, because, for 

example, you end up with a function of height that allows you to predict which 

sport a person belongs in. Whether the person would do better in that sport is 

another question requiring different variables, of course! 

This model is the least common of the four. It's much easier to turn the model 

around to make it height <= sport, and apply... what? Yes, an ANOVA. Strictly 

speaking, though, if the research calls for height to be the independent variable, then you should apply 

categorical modeling, and express your outcomes as an effect of height on the probability of being in the 

different sports. You end up with horrible outcome measures like an odds ratio per unit of height, which 

blows away everyone except card-carrying statisticians! By the way, the test statistic is chi-squared. 

Another approach is to treat each sport as a separate variable, then code the value as 1 if the person 

belongs to the sport and 0 if not. You can also group the sports in some sensible way and again code a 

variable as 0 or 1 if the person belongs to that group. You then treat these variables as numeric and 

analyze them in the usual way. You have to assume the sample size is big enough to ensure the sampling 

distribution of the outcome statistic is normal. I explain what all this means shortly. 

A special case of categorical modeling is logistic regression. You have to use this model when the 

dependent variable is ordinal. A page devoted to this problem also comes up shortly. You could also turn 

simple models like these around and analyze them as ANOVAs, but you shouldn't. 

 MODELS: IMPORTANT DETAILS

  

On this page are details of how a stats program fits a model, which you will need to understand before you 

tackle the other major topic on this page, calculating confidence limits and p values. You'll find that your 

data sometimes violate assumptions the stats programs make when they perform the calculations. One fix--

the t test for unequal variances--is at the bottom of this page. Other fixes are on the following pages: log 

transformation, rank transformation, non-parametric models and tests, models for ordinal dependent 

variables, and non-linear models. 

 How a Stats Program Fits a Model 

 
Key terms you will meet here are parameters, predicted values, residuals, and goodness of fit. 

Parameters 

Recall that, to fit a straight line to data, you need a slope and an intercept for the line. The slope and 

intercept are called parameters of the model. 

If the model is a t test (for example, heights of girls vs boys) or simple ANOVA (heights of three or more 

subgroups), the parameters are single values of height for each subgroup that best fit the data. The values 

are, of course, the means of each subgroup. 

To complete the picture, what are the parameters if we're modeling the frequency of something in one or 

more groups (for example, the prevalence of injury in different sports)? Too easy: it's just the frequency in 

each group, or more exactly, the probability that a person in a each group will have an injury or whatever. 

  

Solution and Residuals 

As we've seen, a relationship or model is represented by parameters like the slope and intercept of a line, 
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or the means of groups. To fit a model, the stats program finds values of the parameters that fit the data 

best. These values are called the solution. But HOW is it done? 

The standard method is to find the values of the parameters that produce the minimum difference between 

the observed values of the dependent variable and the values of the 

dependent variable that would be predicted by the model. The difference 

between an observed and a predicted value is a residual. It's easiest to 

understand when the model you are fitting is a straight line. See the diagram, 

which is the top corner of the height-weight graph blown up so you can see 

what's what. The observed values are just the weights. The predicted values 

are the weights on the line corresponding to each observed weight. You should 

be able to see that if you drew a straight line further away from the points, the 

residuals overall would get bigger. 

The program actually minimizes the sum of the squares of the residuals. Why not just minimize the sum of 

the raw residuals? Let's just accept that it works best to square the residuals first. So when you fit a straight 

line, it's known as the least-squares line. This line doesn't always look quite like the best line--the slope 

sometimes looks a bit too shallow--but that's because of the way the distances are measured and 

minimized only in the Y direction. Trust me, it IS the best line! The same applies when you fit curves rather 

than straight lines. By the way, the root-mean-square error derived from any model is the standard 

deviation of the residuals, and the mean of the residuals is always zero. 

If the model we're fitting is means for different groups (in an ANOVA), the predicted values are just the 

means for each group, and the residuals are the differences between, for example, each girl's values and 

the girls' mean, and ditto the boys.. Easy stuff. And when we're looking at different frequencies of 

something in different groups (contingency table), the predicted values are just the observed frequencies. 

There aren't any residuals as such in that case, but you start to get them when you have categorical 

modeling. No need to understand this subtlety, though. 

  

Goodness of Fit 

I've already introduced the concept of goodness of fit for simple linear regression. I stated that the 

correlation is a good way to describe it, and that 100x the square of the correlation--the percent of variance 

explained--is also used. Now that you know about residuals, I can explain goodness of fit a bit more. 

Obviously, the smaller the residuals, the better the fit. One measure of the magnitude of the residuals is 

their standard deviation, alias the root mean square error. But what can we compare the error with to get a 

generic measure of goodness of fit? Answer: the standard deviation of the dependent variable itself, before 

we try to fit any model. This standard deviation represents the amount of variation in the dependent 

variable, and the error represents the variation that's left over after we fit the model. But statisticians like to 

make things complicated, right? So they square the standard deviation to get total variance, and they 

square the error to get error variance. The total variance minus the error variance is... wait for it... 

the variance explained by the model. Divide the variance explained by the total variance and you have 

something equivalent to the square of a correlation coefficient--we call it the goodness-of-fit R2 for the 

model. Multiply it by 100, and you have... the percent of total variance explained by the model, or just 

the percent of variance explained. Cool! 

Stats books have lots of formulae involving sums of squares, which are what we used to use to calculate 

statistics in the days before computers. Sums of squares are directly related to variances. The total sum of 

squares is the sum of the squares of each observed value after the mean has been subtracted from it. The 

residual sum of squares is exactly what it says. Subtract the residual SS from the total SS, divide by the 

total SS, and you have another formula for R2. 

The R2 is also identical to the square of the correlation between the observed values and the values 

predicted by the model--quite a nice way of thinking about goodness of fit for a complex model. And of 

course, for a simple linear regression, the R2 for the model is the same as r2, the square of the correlation 

coefficient. 
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67 
 

  

The stats program should give you a p value for the R2, which will help you make decisions about the linear 

relationship between the dependent variable and independent variable. What programs currently won't do 

is give you confidence limits for the R2. Maybe we don't really want it anyway. It's easier to interpret R 

rather than R2, as discussed in the page on scale of magnitudes. So take the square root of the R2, then 

work out the confidence interval of this correlation using the Fisher z transformation. (The "n" in the Fisher 

formula in this case is the number of degrees of freedom for the error term in the linear model, minus 1.) 

I've set it all up on the spreadsheet for confidence limits. 

  

Goodness of fit for models in which the dependent variable is nominal is a bit trickier. As I mentioned 

earlier, goodness of fit is not usually calculated for these models, but various analogs of the correlation 

coefficient (e.g. the kappa coefficient) can be used. The clinical measures of sensitivity and specificity can 

also be regarded as measures of goodness of fit. 

  

 Calculating Confidence Limits

 
Calculating the value of an effect statistic like the difference between two means is usually easy. 

Calculating the confidence interval or confidence limits and/or the p value for the true value of the statistic is 

another matter. In the usual models (t tests, ANOVA, linear or curvilinear regression), the calculations are 

based on three simplifying assumptions: independence of observations, normality of sampling 

distribution, and uniformity of residuals. Let's see what happens and what you have to do if your data 

violate these assumptions. 

Independence of Observations 

Independence of observations refers to the notion that the value of one datum is unrelated to any other 

datum. In other words, knowing the value of one observation gives you no information about the value of 

any other. To see what happens if this assumption is violated, let's take an extreme case. Imagine you are 

doing calculations on what you think is a large data set, but unbeknownst to you, someone has inflated the 

sample size simply by duplicating every observation. The observations in such a data set are definitely not 

independent! The correct confidence interval or p value for a given effect in the data would be given by an 

analysis based on the original sample size, obviously. But the confidence interval you get with the 

spuriously inflated sample will be narrower (by a factor of about 1/root2, or 0.7), and the corresponding p 

value will be smaller too. In general, then, lack of independence of observations results in incorrectly 

narrow confidence limits and incorrectly small p values, because the effective sample size is less than what 

you think it is. 

Observations that are not independent are also said to be correlated or interdependent . There are some 

clever tests for independence in some specific situations, but in general you have to decide yourself --

without recourse to statistical tests--whether there is substantial interdependence among the observations 

in your data set. 

An obvious example of interdependence occurs in any intervention: the subjects each provide two or more 

observations before and after the intervention, and all the observations belonging to a given subject usually 

have similar values compared with values from other subjects. The usual approach to such data is 

a repeated-measures analysis or mixed modeling. 

A statistic summarizing the amount of independence in a set of observations is the degrees of freedom. 

Well, actually, the degrees of freedom summarizes the amount of independence in the residuals in your 

model--and that's as it should be, because the residuals are what the stats program uses to calculate the 

confidence interval. The degrees of freedom is simply the total number of independent bits of error in the 

residuals. Here's an example: fit a straight line to 10 points and you will have 10 residuals but only 8 

degrees of freedom, because the model estimates two parameters--the slope and intercept of the line. 

Some stats procedures account for interdependence of residuals in some complex models by estimating a 

reduced number of degrees of freedom for the residuals. 
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You don't have to worry about the details of degrees of freedom, but you should be aware that the more 

parameters you estimate in your model, the more degrees of freedom you lose. That's not a problem if your 

sample size is large, but with a small sample size the uncertainty in the magnitude of the error will translate 

into substantially wider confidence intervals, because the width of the confidence interval is proportional to 

the value of a t statistic for the number of degrees of freedom of the residuals. The effect starts to bite when 

your model reduces your number of degrees of freedom to 10 or less. So if you have small sample sizes, 

you'll need to keep your models simple. 

Normality of Sampling Distribution 

The sampling distribution of any outcome statistic is the distribution you would expect to get for the values 

of the statistic, if you repeated your study many times. To calculate the confidence limits for the true value 

of most statistics, a stats program has to assume that this distribution is normal. If your raw data have a 

normal-looking distribution, the sampling distribution of all the usual outcome statistics based on the data 

will definitely be normal, so there's no problem. But even if your raw data are not normally distributed, the 

sampling distribution of a given statistic is often so close to normal that you can trust the confidence limits 

and p value. 

Question: When can't you trust the confidence limits and p value? 

Answer: Depends on how non-normal your residuals are, and how small your sample is. 

Question: How non-normal, how small, and how come!?  

Answer: Let's address how come first. The residuals sort-of add together to give you the sampling 

distribution of your statistic. And when you add enough randomly varying things like residuals together, 

even though each of them is not normally distributed, they smooth out into a normal distribution. You can 

actually prove it mathematically, and the proof is called the central limit theorem. Of course, the more 

non-normal the residuals, the bigger the sample size you will need to get a normal sampling distribution. 

But there are apparently no rules about how non-normal the residuals and how small the sample size need 

to be before an analysis falls over. I could find nothing on the Web and I got no joy when I inquired on a 

statistics mailing list, so I did some simulations to find out about how non-normal and how small. 

I used a variable that has grossly non-normal residuals: an ordinal variable having only two values (0 and 

1). This variable is what researchers use to code no/yes responses or 2-point Likert scales in 

questionnaires. I restricted the analyses to unpaired t tests of two groups with various sample sizes (for 

example, a comparison of the responses of 10 boys vs 30 girls). I found that the confidence limits started to 

go wrong for sample sizes of 10 or less if the average response in one or both groups was <0.3 or >0.7 

(corresponding to more than 70% of the responses in each group being on one or other level of the 2-point 

Likert scale). I also tried ordinal variables with 3, 4 and 5 values, corresponding to Likert scales with 3, 4 

and 5 levels. For any kind of reasonably realistic spread of responses on these scales, the confidence limits 

were accurate for samples of 10 or more in each group. The confidence limits went awry only when 

responses were stacked up on the bottom or top level of the scale, in the same manner as for the 2-point 

scale. Even then they came right for samples of 50 or so. 

My conclusion is that people (me included) have worried needlessly about non-normality of residuals. The 

time to get worried is when the residuals look really awful and you have a sample of only 10 or so subjects. 

When that happens, you'll have to try other approaches:logistic regression in the case of Likert-type 

responses stacked up on one or other extreme value, and some kind of transformation for everything 

else. I explain transformations on the next few pages, starting with log transformation. 

By the way, do not test for non-normality of the residuals. Residuals that look only remotely normal will work 

fine in your analyses, even though the test tells you they aren't normal. And with large sample sizes, 

residuals that look indistinguishable from normal sometimes return a positive test for non-normality, but 

your analyses will definitely be OK here. 

Uniformity of Residuals 

Your residuals are uniform if their mean is zero and their scatter (standard deviation) is the same for any 

subsample or subgroup of observations. So what does all that mean? I'll try to make things clear with an 

example. Here are the data for weight vs height for the linear regression you saw earlier. I've also plotted 
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the residuals against the predicteds, which is the best way to check for non-uniformity. (Go back up this 

page if you need to remind yourself what residuals and predicteds are.) 

 

Notice that the residuals are more scattered for larger predicted values: that means the standard deviation 

is larger for the larger values of height. Notice also that there is a dip in the middle of the plot of the 

residuals: that means the mean of the residuals is positive for the lowest heights, negative for middle 

heights, and possibly positive again for the highest heights. The dip and the scatter are a bit hard to see, I 

admit, but you get used to spotting such things. They're easier to see with larger sample sizes. Actually, 

you can spot the dip and the scatter on the original plot on the left--look closely and you will see that the 

scatter about the line gets bigger for bigger heights, and that the data tend to curve about the line of best fit. 

Another way to spot non-uniformity is to group the predicted values into quantiles of equal numbers of 

observations, for example five groups (quintiles), then plot the means and standard deviations of the 

residuals against the mean of each quantile of the predicteds. In the above example, the mean of the 

residuals would be positive for the lowest group of predicteds, then the means would go negative, then the 

highest subgroup would be positive again. The standard deviation would be small in the lowest group and 

largest in the highest group. 

The jargon to describe this behavior of residuals is heteroscedasticity (hetero- = uneven; -scedasticity = 

scatter). I prefer non-uniform residuals or just bad residuals. So what? Well, the dip in the residuals tells 

you that the straight line doesn't fit the data properly, as you can see from the raw data, too. So you should 

either fit a non-linear model (a curve) instead of a straight line, or you should transform the data to get a 

straight line. We'll deal with non-linear models shortly. Transforming the data means changing the values of 

a variable in some systematic way. The most common ways are log transformation and rank 

transformation. I go into the details of transformations starting on the next page. 

So much for the dip in the residuals, but what about the increasing scatter? If the scatter is not the same 

everywhere, the confidence limits won't be right, because stats programs work out the confidence limits 

(and p values) on the assumption that the scatter is the same. For regression-type models, as in the above 

example, you have no choice: you have to find a transformation that makes the scatter uniform, as we will 

see on the next page. For t tests, there is a simpler solution. 

The unpaired t test often gives rise to non-uniform residuals, but it's really easy to spot them and to do 

something about them. The residuals in an unpaired t test are simply the differences between each 

observation and the mean within each of the two groups. The mean of the residuals in each group is 

therefore automatically zero, so you don't have to worry about that. The scatter of the residuals is simply 

the standard deviation of the observations within each group. 

For example, if you are comparing females and males, check to see how different 

the standard deviation is for the males vs the females (see the figure). Then, if the 

sample size is the same in each group, forget about it! Yes, it doesn't matter how 

different the standard deviations are, you get the right confidence limits when the 

groups are the same size. But if the groups differ in size (e.g., by a factor of 1.1 or 

more) and the standard deviations differ too (also by a factor of 1.1 or more), then 

you gotta do something. And the answer is... use the t test with unequal variances! 

It would be better to call it the t test with unequal standard deviations, but 

statisticians prefer to use the term variance (the square of the standard deviation). Most stats programs 

offer this option along with the usual t test. Your stats program may even do an extra test of whether the 

variances within the two groups are equal, but don't take any notice of the p value for that test. Look instead 
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at the size of the standard deviations and the sample sizes, then make your decision about which form of 

the t test to use. Actually, when the variances are the same and the sample sizes are the same, the 

confidence limits provided by the two tests are practically identical, so you might as well always use the t 

test with unequal variances 

Uniformity of Residuals in Complex Models 

I have been dealing with uniformity of residuals in simple models, which consist of one predictor variable 

(height or sex in our examples). In more complex models--those with two or more predictor variables--you 

should check the uniformity of the residuals not just across the range of predicted values but also across 

the range of values of each of the predictors. You do that by getting your stats package to output all the 

residuals with corresponding values of each predictor variable. For each predictor you then do a plot of the 

residuals (Y axis) against the values of the predictor (X axis) and look for non-uniformity. 

As in the first example above, you get a better idea of any non-uniformity by plotting the mean and standard 

deviation of the residuals. For each nominal predictor variable, you show the means and standard 

deviations on a single plot that includes each level of the variable. For each numeric predictor, you group 

the values of the predictor into quantiles of equal numbers of observations, just like I explained above for 

the predicted values. You then plot the means and standard deviations of the residuals against the mean of 

each quantile of the predictor. Any consistent pattern in the mean of the residuals indicates that the 

mathematical form of the model for that predictor is inadequate. For example, you might need to introduce 

a quadratic or a non-linear term for that variable into the model . Any substantial difference in the standard 

deviation of the residuals for different levels or values of the predictor indicates that you need to transform 

the dependent variable. 

 

  Log Transformation for Better Fits

 
In log transformation you use natural logs of the values of the variable in your analyses, rather than the 

original raw values. Log transformation works for data where you can see that the residuals get bigger for 

bigger values of the dependent variable. Such trends in the residuals occur often, because the error or 

change in the value of an outcome variable is often a percent of the value rather than an absolute value. 

For the same percent error, a bigger value of the variable means a bigger absolute error, so residuals are 

bigger too. Taking logs "pulls in" the residuals for the bigger values. Here's how. 

A percent error in a variable is actually a multiplicative factor. For example, an error of 5% means the error 

is typically 5/100 times the value of the variable. When you take logs, the multiplicative factor becomes an 

additive factor, because that's how logs work: log(Y*error) = log(Y) + log(error). The percent error therefore 

becomes the same additive error, regardless of the value of Y. So your analyses work, because your non-

uniform residuals become uniform. This feature of log transformation is useful for analysis of most types of 

athletic performance and many other measurements on humans. 

Percent Effects from Log-Transformed Variables 

If the percent error in a variable is similar from subject to subject, it's likely that treatment effects or 

differences between groups expressed as percents are also similar from subject to subject. It therefore 

makes sense to express a change or difference as a percent rather than as a raw number. For example, it's 

better to report the effect of a drug treatment on high-jump performance as 4% rather than 8 cm, because 

the drug affects every athlete by 4%, but only those athletes who jump 2 m will experience a change of 8 

cm. In such situations, the analysis of the log-transformed variable provides the most accurate estimate of 

the percent change or difference. Make sure you use natural logs, not base-10 logs, then analyze the log-

transformed variable in the usual way. 

Suppose you end up with a difference of 0.037 (you'll often get small numbers like this).  

Now multiply it by 100, and hey presto, the difference in your mean is 3.7%. Actually, multiplying by 100 is 

an approximation, and it's near enough only for differences <0.05 (5%). The exact percent difference is 
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given by 100(ediff  -  1), where e is exponential e and 

diff is the difference provided by the analysis of the 

log-transformed variable (see explanation box). This 

formula simplifies to 100diff only for diff <0.05. 

I find it easier to interpret the diffs (differences or 

changes) in a log-transformed variable if I use 100x 

the log of the variable as the log transformation. 

That way the diffs are already approximately 

percents. For example, instead of getting a change 

of 0.037, you will get 3.7, which means 

approximately 3.7%. To convert this diff to an exact percent, the formula is 100(ediff/100 - 1), obviously! A diff 

of 3.7 is really 100(e3.7/100 - 1) = 3.8%. 

It's easy to get confused when the percent change is large. For example, a change of 90% means that the 

final value is (1 + 90/100) or 1.90 times the initial value. A change of 100% therefore means that the final 

value is (1 + 100/100) or 2.0 times the initial value. A 200% increase means that the value has increased by 

a factor of 3, and so on. A negative percent change can also be confusing. (In a previous version of this 

paragraph, my interpretation of large negative changes was wrong!) A change of -43% means that the final 

value is (1 - 43/100) or 0.57 times the initial value. An 80% fall means that the final value is only 0.20 times 

the initial value, and so on. 

When variables need log transformation to make them normal, how do you represent their means and 

standard deviations? I think a hybrid approach is best. Convert the mean of the log-transformed variable 

back to raw units using the back-transformation Y = emean (if your transformation was Z = logY) or Y = 

emean/100 (if you used Z = 100logY). Keep the standard deviation as a percent variation or coefficient of 

variation (CV). Calculate this CV in the same way as for differences or changes in the variable: if SD is the 

standard deviation of the log-transformed variable, the approximate CV is simply 100SD, and the exact CV 

is 100(eSD - 1). If you used 100log for your transformation, the approximate CV is simply the SD itself, and 

the exact CV is 100(eSD/100 - 1). 

You can convert the CV into a raw standard deviation, but it's messy and I don't recommend it. Back-

transforming the SD as eSD is incorrect. Instead, you have to show the upper and lower values of the 

mean ± standard deviation as emean + SD and emean - SD. With a bit of algebra, you can show that emean + SD is 

equal to the back-transformed mean times 1 + CV, and emean - SD is the back-transformed mean times 1/(1 + 

CV). Hence a CV of, say, 23% represents a typical variation in the mean of ×1.23 through ×1/1.23. As I 

explain on the page about calculating reliability as a CV, it's OK to write ±CV, provide you realize what it 

really means. 

CAUTION. With log and other non-linear transformations, the back-transformed mean of the transformed 

variable will never be the same as the mean of the original raw variable. Log transformation yields the so-

called geometric mean of the variable, which isn't easily interpreted. Rank transformation yields the median, 

or the middle value, which at least means something you can understand. The square-root and arcsine-root 

transformations for counts and proportions yield goodness-knows-what. Usually it's the effects you are 

interested in, not the mean values for groups, so you don't need to worry. But if the means are important, 

for example if you want the true mean counts of injuries to come out of your analysis, you will have to use a 

cutting-edge modeling approach that does not require transformation, such as binomial regression. 

If you're graphing means and standard deviations of a variable that needed log transformation, use a log 

scale on the axis. Here's how. Plot the values you get from the log-transformed data without back-

transformation, but delete the tick marks and put new ticks corresponding to values of the original raw 

variable that you would normally show on a plot. (You will struggle to understand what I am getting at here. 

Persevere. And if you use Excel to do your graphs, paste the graph into Powerpoint and do the editing 

there.) The error bar or bars go onto the plot without and fiddling. In fact, you can put the error bar 

anywhere on the axis. 

More Examples of Log Transformation 

Explanation of 100(ediff  -  1) and 100diff 

If Z = log(Y) and Z' = log(Y'),  

then diff = Z' - Z = log(Y') - log(Y) = log(Y'/Y). 

But Y'/Y = 1+(Y'-Y)/Y = 1+(percent change in Y)/100. 

Therefore ediff = Y'/Y = 1+(percent change in Y)/100. 

Therefore percent change in Y = 100(ediff  -  1). 

For small diff, ediff  = 1 + diff, 

so percent change in Y is approximately 100diff. 
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Let's get back to the issue of goodness-of-fit with log transformations. In 

a previous example with weights and heights (see the figure at right), it's clear that 

people's weights get more variable for heavier people--quite reasonable when you 

think about it--so taking logs of the weight would be a good thing to try. When you 

fit a straight line, log transformation of the independent variable may also remove 

the "dip" in the residuals that we saw with this example on the previous page. So 

taking logs of the heights and the weights in the above example would make the 

model much fitter! 

Many relationships that have a curve in them respond well to log-log transformation. To get technical, all 

models of the form Y = aXn convert to simple linear models when you take logs: logy = loga + nlogX. The 

relationship between weight (Y) and height (X) is a particularly good example. The value of the parameter n 

is given by the slope of the log-log plot, and it is about 1.7, or nearly 2, which is why we normalize body 

weights by dividing by the height squared to get the so-called body mass index. It would be better to divide 

by height to the power of 1.7, but that's another story. 

Now check out the figure at right, from our example of the effect of sex on height. Do 

you think there's a need for log transformation here? You bet! Just look at the 

differences in the standard deviations on the bar graph: the males have a bigger 

standard deviation and a bigger mean, so log transformation is indicated (provided 

the means and standard deviations are pretty-much in proportion). Analysis of log-

transformed height will give the difference between the females and males as a 

percent. You can also analyze these data without transformation by using the t test 

with unequal variances. What you will get then is the absolute difference in height 

between the average female and the average male. There's nothing wrong with that, if it's what you want.  

  

Another case for some sort of transformation is where the standard deviation is about the same size as, or 

even bigger than, the mean. This sort of thing sometimes happens when variables have very skewed 

distributions. Example: the level of deliberate physical activity in adults, where you have most people 

hovering around zero hours per week, and the rest doing up to 10 hours a week or even more. So the 

mean ± SD might be 0.7 ± 1.8 hours per week. It doesn't mean that some people are doing negative hours 

per week! For such awful data we could use rank transformation: see the next page. 

 

 Rank Transformation: Non-Parametric Models

 
Take a look at the awful data on the right. It's clear that activity is greater at 

younger ages, so you want an outcome statistic to summarize that important 

finding. Fitting a line or a curve would do the trick Let's keep it simple and fit a line, 

in the usual least-squares way. The slope of the line is what you want, and its value 

is something like 1.0 hours reduction in activity per decade of age. You also want 

confidence limits or a p value for the slope. So how do you go about it? 

The least-squares approach gives you confidence limits and a p value for the slope, 

but you can't believe them, because the residuals are grossly non-uniform. You don't have to plot residuals 

vs predicteds to see that--just look how much bigger the spread is about the line for younger subjects. The 

bigger spread occurs for bigger values of activity, so that's a strong indication for log transformation. 

Unfortunately you can't take logs here, because some subjects have zero activity, and you can't take the 

log of zero. (You get minus infinity!) I've seen people attempt to solve this problem by adding a small 

number, such as 1 hour, to everyone's activity, then taking logs. I don't really agree with this approach, 

because it means changing some of the data. 

What to do? The best approach is to use bootstrapping, but that's a big ask for most researchers. The next-

best approach is to "take ranks" rather than to take logs. In other words, rank transform the dependent 

variable. What does that mean, exactly? Simply that you arrange the values of activity for every subject in 
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rank order, then assign the smallest a value of 1, the next smallest a value of 2 etc., etc. Now do your 

modeling in the normal way, but use the variable representing the rank as the dependent variable. You 

have just performed anon-parametric analysis--more about that below. Rank transformation usually 

results in uniform residuals (same scatter for any age) for the rank-transformed variable. You should check 

that they are indeed uniform. If they aren't, you are no better off. 

Confidence Limits via the P Value for the Rank-transformed Variable 

But wait! You originally wanted confidence limits for the slope of the line of activity vs age. The analysis of 

rank-transformed activity will give you confidence limits for a slope, but it will be the slope of the ranks of 

the activity, not the slope of activity itself. The slope and its confidence limits in rank units are just about 

impossible to interpret, and that's true of all analyses involving rank transformation. So now what? Well, I've 

agonized over this one for some years, and I now have the solution. You probably won't find this one 

anywhere else, but I think it's the way to go. 

The analysis of the rank-transformed variable gives you a p value for the outcome statistic, in this case the 

slope of the line. You now assume that the p value applies to the slope of the line you got by analyzing the 

untransformed data. Next assume you have a sample of sufficient size that the central limit theorem comes 

into action to give you a normal sampling distribution for your slope. Therefore combine the p value and the 

slope to calculate the confidence limits for the slope, using the spreadsheet for confidence limits. Done! 

Confidence Limits via Cohen's Effect-size Statistic for the Rank-transformed Variable 

Another approach to getting confidence limits for the outcome statistic with a rank-transformed variable is to 

calculate a Cohen-type effect size (change in the mean divided by a standard deviation). Again, you won't 

see this approach anywhere else, but again, it works well. The only drawback is that most folks still aren't 

used to Cohen effect sizes. Let me remind you that this outcome statistic is ideal for studies of average 

subjects in a population, but it's no good for studies of performance of competitive athletes. 

I'll start with the simple case of the difference in the mean of two groups: for example, the mean heights of 

females vs males. Rank-transform height without regard to sex, then do an unpaired t test (the unequal 

variances version) on the rank-transformed height. Calculate the effect size for the difference between the 

means of two groups by taking the difference between the means of the ranked height, then dividing by the 

average standard deviation of the ranked variable within the two groups. (You might have to generate the 

average standard deviation yourself, if the t test doesn't give it to you. Average the variances, not the 

standard deviations, then take the square root. If you've done an ANOVA rather than a t test, the root-

measn square error is the average standard deviation you want.) Divide the upper and lower confidence 

limits of the difference in the mean by the average standard deviation to get approximate confidence limits 

for the effect size. 

I have checked by simulation that this Cohen-type estimate is unbiased for normally distributed variables. In 

other words, on average it gives the same effect size as the analysis of an untransformed normally 

distributed variable. Cool! Strictly speaking, the confidence limits for the effect size should be derived using 

something called the non-central t statistic, to take into account uncertainty in the standard deviation. With 

a reasonable sample size you don't have to worry about this detail. One day soon I will provide a 

spreadsheet to do the calculation. 

You can take a similar approach to express the slope of a straight line in effect-size units, when the straight 

line comes from the rank-transformed variable. In this case you divide the slope and its confidence limits by 

the standard error of the estimate (or the root-mean square error) from the regression analysis of the rank-

transformed variable. In the above example, you might get something like 0.7 Cohen units per decade, and 

whatever confidence limits. If you are interested in the difference over a decade, 0.7 would be a moderate 

effect on thescale of magnitudes. Over two decades, the difference would be 1.4 units, which would be 

large. 

It's also possible to avoid dealing directly with the slope to express the magnitude of the effect of X on Y 

(here age on activity). Just rank-transform the Y, then calculate the correlation coefficient and its 

confidence limits. Interpret the magnitudes using the scale of magnitudes. This is the simplest and possibly 
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the best method of all, provided you aren't particularly interested in the magnitude of the effect for different 

differences (sic) in X. 

Non-parametric Analyses 

Your stats program will probably convert values of a variable to ranks with the click of a mouse. Or if you 

select non-parametric analysis in the stats program, it will do the transformation without you realizing it, 

because a non-parametric analysis is a parametric analysis on a rank-transformed variable. The term non-

parametric refers to the fact that you are no longer modeling, for example, the means of your groups, 

because that information is lost when you take ranks. But you are still performing a parametric analysis, so 

the term is a misnomer. 

The names statisticians use for non-parametric analyses are misnomers too, in my opinion: Kruskal-Wallis 

tests and Kolmogorov-Smirnov statistics, for example. Good grief! These analyses are simple applications 

of parametric modeling that belie their intimidating exotic names. But there is one name you need to know: 

a non-parametric correlation coefficient is called a Spearman correlation coefficient. Most stats programs 

will calculate this at the click of a mouse, but note that it is derived by ranking both variables. Most of the 

time you need to rank only the dependent variable, not the independent variable too. 

Actually, some non-parametric analyses come close to being truly non-parametric--things like the signed 

rank-sum test. But even here you are modeling probabilities, so it's still debatable whether they should be 

called non-parametric. The simplest example is the sign test. It's worth a paragraph, because it tests your 

understanding of p values. Here's the problem: what's the minimum number of all positives or all 

negatives that need to come up for you to decide whether there's a significant difference? For example, if 

you have a group of seven athletes, and they all get better after you've done something to them, is that 

statistically significant? (Let's leave aside the question of a control group.) Look at it from the point of view 

of tossing a coin. If you toss a coin several times and get all heads or all tails, how many tosses does it take 

before you decide the coin is fishy? Let's start with three tosses. The chance of getting three heads or three 

tails is 0.5*0.5*0.5 + 0.5*0.5*0.5, i.e. 0.25, so three isn't enough. Four heads or four tails in a row occurs 

with a probability of 0.125, and so on until we get to six in a row (p = 0.03) and eight in a row (p = 0.008). 

So you need six positives or negatives in a row to declare significance at the 5% level, and eight at the 1% 

level. 

Here's a good final question. Why not play it safe with non-uniform residuals by doing all analyses after 

rank transformation? Hmmm... Well, rank transformation throws away some information, so it can't be as 

good as using the original variable. But the loss of information only starts to bite when you have small 

sample sizes. In other words, with small sample sizes, non-parametric analyses are less likely to detect 

effects, or the power is reduced, or the confidence intervals are wider. So use parametric analyses 

wherever possible. Besides, it's easier to interpret the outcomes from a parametric model. 

 Ordinal Dependent Variables

 
Outcome variables with only a few possible values, such as 1, 2 or 3, need special treatment. Variables like 

this are called ordinal, because they indicate an ordering of responses. They crop up often in 

questionnaires, where people have to tick one response from a choice likeless, the same, or more. The 

choices make up a so-called Likert scale. We use integers to number and record the responses, but the 

responses aren't integers. All the integers do is indicate order in the levels of the response. That's why 

ordinal variables are neither numeric nor nominal. 

If we treat the ordinal variable as nominal, we lose the information about the ordering. But if we try to treat it 

as a numeric variable, we might violate one or more of the assumptions we make when we calculate 

confidence limits or p values. I used to think such violations were a frequent problem, but it turns out that 

they are rare. Most of the time you can use t tests for comparisons of groups, and if you are fitting lines or 

curves, you can use rank transformation to get rid of non-uniform residuals. 

As I pointed out earlier, the rare situations occur when the responses of a Likert-type variable are almost all 

stacked up on the top or bottom level of the scale. Rank transformation doesn't work in these situations 
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either, because the rank-transformed variable has the same problems as the raw variable. In such 

situations, the only way forward is to model the probabilities of responses being at each level. It's 

called logistic regression. You've met this before as categorical modeling. The only difference is that 

logistic regression takes into account the fact that the different levels of the outcome are ordered, whereas 

plain old categorical modeling treats the outcome as a nominal variable, without any implied order in the 

levels of the variable. 

Logistic regression gives you a way out when you have a variable, like habitual intense physical activity, 

with almost everyone on zero and a smear of values for the rest. Split the values of your outcome variable 

into a number of ordered levels (the first being zero, of course), then do a logistic regression on those 

levels. You are actually transforming the ugly continuous variable into a more manageable Likert-scale 

(ordinal) variable. 

 Counts and Proportions as Dependent Variables

 
If your dependent variable represents a count (e.g., the number of injuries in different sports) or 

a proportion (e.g., the percent of Type I muscle fibers in a muscle biopsy from different athletes), analysis 

can be a challenge. Once again, the problem with the usual analyses is the possibility of violation of one or 

more of the assumptions we have to make when calculating confidence limits or the p value. 

What I said on the last few pages about t tests of ordinal variables and t tests of Likert-scale variables 

applies also to counts: t tests are usually OK, and they will fall over only when you have a small sample 

size and more than 70% of your subjects score zero counts (because then the sampling distribution of the 

difference between the means won't be close enough to normal). 

When you are fitting lines or curves, you also have to worry about non-uniformity of residuals. With counts, 

this worry is very real, because the variation in a given count from sample to sample depends on how big 

the count is. For example, the typical variation (standard deviation) in a count is usually simply the square 

root of the count, so a count of about 400 injuries varies typically by ±20, whereas a count of about 40 

injuries varies typically by ±6. I hope it's obvious that the residuals for injury counts of 400 will therefore be 

much larger than those for counts of about 40. Rank transformation would fix these non-uniform residuals, 

but better approaches are available: binomial regression, Poisson regression, square-root 

transformation and arcsine-root transformation. 

Binomial and Poisson Regression 

When counts have a smallish upper bound (e.g., the number of injured players in a squad of 24 is at most 

24), the counts from sample to sample vary according to what is known as a binomial distribution. When 

the upper bound is very large compared with the observed values of the count (e.g., the number of spinal 

injuries in American football each year), the counts have a Poisson distribution. With a good stats 

program, you can dial up an analysis that uses either of these distributions. The result is a binomial 

regression or a Poisson regression. In the Statistical Analysis System, you can do these analyses with 

Proc Genmod. Genmod stands for generalized linear modeling, which is an advanced form of general 

linear modeling that allows for the properties of non-normally distributed variables such as counts and 

proportions based on counts. 

Don't feel intimidated by binomial and Poisson. Are you happy with the notion that the values of most 

variables have the bell-shaped normal distribution? OK, counts or proportions of something don't have the 

normal shape when the counts are small, so we need different mathematics to describe their shapes, and 

different names for them. As counts get larger, the shapes of the binomial and Poisson distributions tend 

towards the normal shape. You still have the problem of non-uniform residuals, though, because the 

variability from observation to observation for larger counts is more (in absolute values) or less (in 

percentage terms) than for smaller counts. Binomial and Poisson regressions and other forms of 

generalized linear modeling take care of the non-uniformity. For more on generalized linear modeling, in 

particular the specification and use of distributions and link functions, read this message I sent to the 

Sportscience email list in July 2004. . 
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Square-root and Arcsine-root Transformation 

One way to deal with non-uniform residuals is to transform the variable. We've seen that log 

transformation works for some variables, and rank transformation works for most variables as a last resort. 

Is there a transformation for counts that will allow us to use normal analyses instead of binomial or Poisson 

regression? Yes, provided you aren't close to some upper bound in the counts, just use the square root of 

the counts in the usual analyses. When you've derived the outcome statistic and its confidence limits, 

assess their magnitudes with Cohen's or my scale of effect sizes, as I explained for rank transformation. 

You can't back-transform an effect (such as a difference between means) into a count by squaring it, but 

you can get a feel for the magnitude as a count relative to the mean by adding the value of the effect 

appropriately to the mean of the square-rooted counts, then squaring it. Square the mean for comparison. 

Add each of the confidence limits of the effect to the square-rooted mean and square it to get a feel for the 

precision of the magnitude. 

Read the cautionary note about how the value of a back-transformed mean is not the same as the mean of 

the raw variable. For a simple example, imagine you have a team with only one injury this season and 

another team with nine injuries. The mean of the raw number of injuries is (1+9)/2 = 5. But the mean of the 

root-transformed injury counts is (1+3)/2 = 2, and when you square 2 to back-transform it you get 4! 

Proportions require an exotic transformation called arcsine-root. To use this transformation, express the 

proportion as a number between 0 and 1 (e.g., 210 Type I muscle fibers in a biopsy of 542 total fibers 

represents a proportion of 210/542 = 0.387). Now take the square root and find the inverse sine (arcsine) of 

the resulting number; in other words, find the angle whose sine is the square root of the proportion. (The 

angle can be in degrees or radians, where 360 degrees is 2 pi radians.) Use that weird variable in your 

analysis, butweight each observation by the number in the denominator of the proportion, to ensure that the 

residuals in the analysis are uniform. You'll have to read the documentation for your stats program to see 

how to apply a weighting factor. To gauge magnitude of effects with an arcsine-root transformed variable, 

apply the Cohen or Hopkins scale, as explained for rank transformation. The appropriate standard deviation 

is the root-mean square error from the analysis of the transformed variable, because this error should take 

into account the weighting factors. As is the case for counts, back-transformation of the observed effect 

works only if you add the effect appropriately to the mean before taking its sine and squaring it. Multiply the 

result by 100 if you want it as a percent. Do the same with the confidence limits. 

The square root and arcsine-root transformations work well even for low counts or zero proportions. As with 

ordinal variables, you'll get into trouble only with small sample sizes when more than 70% of your subjects 

have a score of zero or a proportion of zero. Then youhave to use binomial or Poisson regression. 

Phew! The square-root and arcsine-root approaches are complex. I recommend that you come to terms 

with a stats package that offers binomial and Poisson regression or generalized linear modeling. 

 Linear and Non-Linear Models

 
A linear model is one in which the independent variable is added or multiplied together with the parameters. 

A non-linear model has exponents, logarithms, or other complicated functions of the independent variable 

and parameters. 

Some non-linear models can be reduced to linear models to make it easier to do the fitting. For example, if 

your Y values curve upwards like a simple quadratic in relation to your X values, then it might be 

appropriate to fit Y = aX2. You could reduce this model to a linear one simply by introducing a new variable 

called S (say), which has the same values as X2. You then fit the linear model Y = aS. Some stats 

programs generate these new variables automatically when you fit quadratics, cubics, or other higher 

order polynomials. More on theseshortly. 

Most non-linear models can't be reduced to a simple linear model in this way. But a good stats program can 

fit non-linear models as complex as you like. All you do is choose the mathematical form of the model; the 

stats program then calculates the values of the parameters that give the best fit to your data, as explained 

earlier. The usual method is to minimize the sum of the squares of the residuals. 

http://www.sportsci.org/resource/stats/logtrans.html
http://www.sportsci.org/resource/stats/logtrans.html
http://www.sportsci.org/resource/stats/nonparms.html
http://www.sportsci.org/resource/stats/effectmag.html
http://www.sportsci.org/resource/stats/nonparms.html#cohen
http://www.sportsci.org/resource/stats/logtrans.html#backtrans
http://www.sportsci.org/resource/stats/effectmag.html
http://www.sportsci.org/resource/stats/nonparms.html#cohen
http://www.sportsci.org/resource/stats/polynomial.html
http://www.sportsci.org/resource/stats/modelsdetail.html#parameters
http://www.sportsci.org/resource/stats/modelsdetail.html#parameters
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Note: Whatever model you fit, you should check visually that it really does fit the trend in the data. In other 

words, plot the curve and see if your points are fairly evenly scattered about it. Or get the stats program to 

plot residuals against predicteds from the model, then eyeball the plot to make sure you haven't got bad 

residuals. 

 

 COMPLEX MODELS

 
I've split complex models up into two main groups: more than one predictor (independent) variable, 

starting on this page, and repeated-measures models later on. In between there's a short page on more 

than one dependent variable, and variables of uncertain status. All details about model fitting on the 

previous few pages apply to all these models. 

 More Than One Predictor (Independent) Variable

 
In other words, models like : 

weight <= height  sex 

This model is called an analysis of covariance (ANCOVA) when one predictor variable is numeric (height) 

and the other is nominal (sex). Covariance refers to the fact that height "co-varies" with the dependent 

variable, so height is also known as a covariate. Other names for models with two or more predictor 

variables include multiple linear regression when all variables are numeric and two-way analysis of 

variance (or three-way ANOVA etc) when all are nominal. In essence they are all the same. Before we go 

into each model in detail, let's understand what it means to have more than one predictor variable. Let's 

stay with the above example. 

What the Model Means 

It's easiest to think about the model as a tool for predicting weight when you know a person's height and 

sex. If there IS a relationship between weight and height, then knowing a person's height will tell you 

something about his or her weight. Similarly, if there IS a relationship between weight and sex, then 

knowing a person's sex will also allow you to say something about her or his weight. And if you know both 

height and sex, you'll be able to be even more specific about weight. So that's the question that the overall 

model poses: what do the predictor variables taken together tell you about the dependent variable? 

Stats programs can calculate the usual goodness-of-fit R2 for the model, which you can interpret as a 

measure of how much the independent variables tell you about the dependent variable. In formal terms the 

R2 is the percentage of the variance in the dependent variable explained or predicted by the independent 

variables. You can also get a test statistic for the full model and its associated p value. You could use the p 

value to work out confidence limits for the overall R, but otherwise these statistics aren't worth worrying 

about. Much more important are effects derived from the predictor variables, as I will describe now. 

  

"Controlling" for Something 

The overall relationship is seldom the main focus when you have more than one predictor variable in the 

statistical model. Instead, these models are used to address a much more important question: what is the 

effect of something when we take into account something else? It's such an important concept, 

statisticians have some jargon for it: they talk about controlling for something, adjusting for something, 

or partialing something out. For example, what is the effect of sex on weight, when we take height into 

account? Think about it. Boys are heavier than girls, but boys are taller than girls, and taller people are 

heavier, so if we take into account the difference in height between boys and girls, is there any "real" 

difference in weight between them? A trivial question here maybe, but not if your outcome variable is an 

athlete's performance or health, and you control for time spent training before you look at the effect of sex 

or sport or region or whatever. And of course, it's also important to know about the effect of training on 

performance or injuries when you take into account differences between sexes or sports or regions. 

http://www.sportsci.org/resource/stats/modelsdetail.html#residuals
http://www.sportsci.org/resource/stats/modelsdetail.html#hetero
http://www.sportsci.org/resource/stats/modelsdetail.html#hetero
http://www.sportsci.org/resource/stats/repanova.html
http://www.sportsci.org/resource/stats/moredepvars.html
http://www.sportsci.org/resource/stats/modelsdetail.html#goodness
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What do we really mean when we control for height or take height into account in the comparison of the 

weights of boys and girls? Simply this: if boys and girls had the same height, what would be the difference 

in weight? And that's exactly what the statistical analysis tells us: it gives us the effect of a predictor with 

all other predictors held constant. When you do your usual estimates or contrasts for the effects you're 

interested in, or inspect the solution of the model, the answers you get are automatically adjusted for the 

presence of all the other predictor variables, as if they are all set to come constant value. For example, you 

get the difference in the mean weight of boys and girls who have the same (mean) height. Note that the 

analysis automatically controls for every predictor variable, so you can also address the question: what's 

the effect of height on weight when you take sex into account? What you get from the analysis for this 

question is the average slope of the lines for the boys and the girls, as if there was an equal number of 

boys and girls in the study. I'll delve into these issues more on the next page. 

Why do the estimates for a given predictor represent the effect of the predictor with all other predictors in 

the model held constant? I'm not sure of the best way to answer this question. I've satisfied myself by 

considering that a linear model with two numeric predictor variables represents a plane in 3-D space. The 

stats program finds the least-squares plane of best fit. With a bit of thought and 3-D doodling I was able to 

see how the value of the coefficient of each variable is the "slope" for that variable with the other predictor 

variable held constant. 

  

Mechanism Variables and Confounders 

In the above example, suppose we adjust or control for height and find no substantial difference in the 

mean weight of boys compared with that of girls. Is it therefore reasonable to say that differences in height 

are responsible for the differences in weight between boys and girls? Yes! In fact, I call height 

a mechanism variable for the effect of sex on weight: sex affects height, and height affects weight. Any 

variable (here, height) on the causal path between the predictor (sex) and the dependent (weight) will 

reduce the effect of the predictor on the dependent when that variable is included as a covariate in a 

multiple linear regression. So if you see such a reduction, the covariate could be a mechanism variable. If 

you don't see a reduction, the covariate can't be a mechanism variable. A reduction in the effect is 

necessary but not sufficient for the covariate to be a mechanism. 

Some researchers also call height a confounding variable or a confounder in the relationship between 

sex and weight. When you use the word confounder to describe height, you are implying that it sort-of 

makes the difference between boys and girls seem bigger than it really is. Boys are heavier than girls, of 

course, but height is confounding (or even compounding) the difference. There might be no difference 

when you take account of height. In fact, girls might even be heavier than boys. Fair enough, but the 

word confounder should be reserved for a different kind of covariate, one that has or could have a causal 

effect jointly on the predictor and the dependent. Let's consider another example to make the point clear. 

Consider the effect of physical activity on health in a cross-section of the population. Do the analysis 

without regard to the age of the subjects and you will find a really strong relationship. Cool, jobs for 

exercise professionals! Now control for age and you will find the relationship gets a lot weaker. Curses! It's 

likely that age is the real cause of most of the relationship between activity and health: age reduces 

physical activity and age reduces health. We say that the effect of physical activity on health is confounded 

by age. It's only when we control for age that we see the effect of differences in activity on the health of 

people of the same age. 

What happens in the above example if we make age the predictor variable and physical activity the 

covariate? Age on its own will have a strong effect on health, but control for physical activity and you will 

find the relationship gets a lot weaker. So, you would be justified in regarding physical activity as a possible 

mechanism for the effect of age on health. Wow, that's cool again! Whether the effect of physical activity on 

health is really causal or just coincidental cannot be resolved with cross-sectional data. You have to do 

interventions and a repeated-measures analysis to sort that out. I explain how to include a mechanism 

variable as a covariate in such analyses later on. 

 

 

http://www.sportsci.org/resource/stats/ttest.html#contrasts
http://www.sportsci.org/resource/stats/modelsdetail.html#residuals
http://www.sportsci.org/resource/stats/ancova.html
http://www.sportsci.org/resource/stats/otherrems.html#covariates
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Interactions 

I now have to introduce you to another fearful challenge: interactions. Let's just have a look first, then we'll 

climb it in several ways on the next few pages. 

Height has an overall effect on weight, and sex has an overall effect on weight. But maybe the effect of 

height on weight is a bit different for boys than for girls: maybe being taller has a bigger effect on weight for 

boys than for girls. We show that in the model with the so-called interaction term, which is represented by 

multiplying height and sex together: 

weight <= height  sex  height*sex 

This will all make sense when we deal with the specific models. Meanwhile one more bit of jargon. Height 

and sex are called main effects, to distinguish them from the interaction term. When you have more than 

two main effects, you can have more than one interaction. When you have all the different combinations of 

the effects, including the interactions, you have what's called a full model. 

A Warning! 

There are several traps for the unwary when you have more than one predictor variable. Read the 

following pages carefully or you might jump to wrong conclusions with your data. 

 Multiple Linear Regression

 
  model: numeric <= numeric1  numeric2... + interactions 

  example: weight <= height  age  height*age 

The example shows weights and heights of a sample of people aged 

between 20 and 60. Each person is represented by a number, which 

is the person's age rounded to the nearest decade (2 = 15-24 years, 3 

= 25-34 years, etc.). Look closely at the way the numbers are 

distributed. What would you conclude about the effect of age on 

weight, for any given height? Right! People get heavier as they get 

older. 

Multiple linear regression is the model to use when you want to look at 

data like these, consisting of two or more numeric independent 

variables (height, age) and a numeric dependent variable (weight). In this first example, the only effect of 

age is to produce a uniform increase in weight, irrespective of height. It's just as correct to say there is a 

uniform increase in weight with height, irrespective of age. These interpretations come straight from the 

model. Or you can look at the graphical interpretation and think about the effect of age as altering the 

intercept of the weight-height line in a uniform way. But what about when there's an interaction? 

Interpreting the Interaction Term 

As you can see, the effect of an interaction is to make different 

slopes for different ages. The slopes change in a nice linear 

way with increasing age, just as the intercepts did (and still do). 

In the example, I've given older people a greater weight for a 

given height than younger people, which is not necessarily 

realistic. Real data would certainly not show such clear-cut 

effects of either height or weight, anyway. 

It's one thing for me to show you a clear-cut example with 

colors for the different ages. It's quite another matter for you to 

interpret real data, without a colored graph. If you get a substantial interaction with your data, I suggest you 

look at the values of the parameters in the solution. Use them to work out how your outcome variable is 

affected by a range of values of the independent variables. That's the only way you will sort out what's 

going on. 
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By the way, for publication you would not plot them as I have shown here. In fact, generally you don't plot 

the data for linear regressions, be they simple or multiple, unless the data show interesting non-linear 

effects. 

  

Paradoxically Insubstantial Effects 

On the previous page I pointed out how one independent variable can make another seem insubstantial in 

an ANCOVA. The same is true here. It's important, so let's take an example. 

Suppose you want to predict running-shoe size (dependent variable) from an athlete's height and weight. 

These two variables are well correlated, but let's assume the correlation is almost perfect. When two 

variables have an almost perfect correlation, it means they effectively measure the same thing, even if they 

are in different units. Now let's put them both into the model. Will weight tell you anything extra about shoe 

size, when height is already in the model? No, because weight isn't measuring anything extra, so it won't be 

substantial in the model. But hey, height won't be substantial with weight in the model, for the same reason. 

So you have the bizarre situation where neither effect is substantial, and yet both are obviously substantial! 

If you didn't know about this phenomenon, you might look at the p values for each effect in the model, see 

that they are both greater than 0.05, and conclude that there is no significant effect of either height or 

weight on shoe size. 

The trick is to look at the p value for the whole model as well. None of the effects might be significant, but 

the whole model will be very significant. And you should always look at the main effects individually, as 

simple linear regressions or correlations, before you go to the multiple model. You'd find they were both 

substantial/significant. 

So in this example, would you use both independent variables to predict shoe size? Not an easy question 

to answer. I'd look to see just how much bigger the R2 gets with the second independent variable in the 

model, regardless of its statistical significance. More on this, next. 

Now for two important applications of multiple linear regression: stepwise regression, and on the next 

page, polynomial regression. 

 

 Stepwise Regression

 
  model: numeric <= numeric1  numeric2  numeric3... 

  example: competitive speed <= a set of fitness-test variables 

No figure is needed for this one. No interactions either, thank goodness! Numeric1, numeric2, and so on 

are independent variables, and you try to find the best ones for predicting your dependent variable. 

An obvious example is where your dependent variable is some measure of competitive performance, like 

running speed over 1500 m, and your independent variables are the results of all sorts of fitness tests for 

aerobic power, anaerobic power, and body composition. What's the best way to combine the tests to 

predict performance? An interesting and possibly useful question, because you can use the answer for 

talent identification or team selection. (Why not use the 1500-m times for that purpose? Hmmm...) Anyway, 

in stepwise regression the computer program finds the lab test with the highest correlation (R2) with 

performance; it then tries each of the remaining variables (fitness tests) in a multiple linear regression until 

it finds the two variables with the highest R2; then it tries all of them again until it finds the threevariables 

with the highest R2, and so on. The overall R2 gets bigger as you add in more variables. Ideally of course, 

you hope to explain 100% of the variance. 

Now, even random numbers will explain some of the variance, because you never get exactly zero for a 

correlation with real numbers. So you need an arbitrary point at which to cut off any further variables from 

entering the analysis. It's done with the p value, and the default value is 0.15. When a variable enters the 

model with a p value >0.15, the stepwise procedure halts. You'd hardly call a p value of 0.15 significant, but 

it's OK if you're using stepwise regression as an exploratory tool to identify the potentially important 

predictors. 

http://www.sportsci.org/resource/stats/ancova.html#insub
http://www.sportsci.org/resource/stats/polynomial.html
http://www.sportsci.org/resource/stats/polynomial.html
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The question of what variables you finally include for your prediction equation is not just a matter of the p 

values, though. You should be looking at the R2 and deciding whether the last few variables in the stepwise 

analysis add anything worthwhile, regardless of their significance. If the sample size isn't as big as it ought 

to be, there's a good chance that the last few variables will contribute substantially to the R2, and yet not be 

statistically significant. You should still use them, but knowing that their real contributions could be quite a 

bit different. 

OK, what is a worthwhile increase in the R2 as each variable enters the model? Take the square root of the 

total R2 after each variable has entered, then interpret the resulting correlations using the scale of 

magnitudes. If the correlations are in the moderate-large range, an increase of 0.1 or more is worthwhile. If 

the correlation is in the very large to almost perfect range, then smaller increases (0.05 or even less) are 

worthwhile, as I explain later. 

Finally, a warning! If two independent variables are highly correlated, only one will end up in the model with 

a stepwise analysis, even though either can be regarded as predictors. Go back up this page for the 

reason. And as discussed in the previous paragraph, the decision to keep both in the model depends on 

the R. 

 Polynomial Regression

 
The figure shows data that lend themselves to fitting a polynomial. As you can see, 

there is a so-called curvilinear trend in an outcome measure when it is plotted 

against an independent variable. In the example the dependent variable is some sort 

of attitude in athletes, but it could be performance or just about anything. The 

independent variable is often some measure of time--here it's years of competitive 

experience. Maybe the athletes start to go stale in this sport after a certain time, and 

you'd like to be able to say so, quantitatively, with confidence limits. Polynomial 

regression is the answer for these data and for most curvilinear data that either show a maximum or a 

minimum in the curve, or that could show a max or min if you extrapolated the curve beyond your data. Log 

transformation is more likely to fit a curve that shows an ever-increasing or ever-decreasing trend, although 

often it makes sense to fit a polynomial to log-transformed data. 

Often the different points come from the same subjects, especially when time is the independent variable. 

You can still fit polynomials to such data, but you have to use repeated-measures models. I deal 

with repeated-measures polynomials later, but the interpretation of the numbers describing the shape of the 

curve is the same, and I deal with that here. 

A Simple Polynomial 

   model: numeric <= numeric  numeric2  numeric3... 

   example: attitude <= experience  experience2 

Notice the subtle difference from the model for multiple linear regression on the previous page. Here the 

numbers 2, 3... represent powers of the same variable. It might be easier to see if I write: 

Y <= X  X2  X3...  The stats program fits the polynomial Y = a + bX + cX2 + dX3... to the data. Polynomials 

are a special case of the more general non-linear models. Check that page out again right now! 

For data that are shaped like a parabola, you probably won't need more than a quadratic model 

(Y <= X  X2). If the curve is trends up again at one end, you'll need a cubic model. Curves with multiple 

kinks need even higher-order terms. It's rare to go past a quadratic, though. 

When you fit a model like Y <= X  X2, the stats program finds the best quadratic curve to fit the data. In 

other words, it will find the best values for the coefficients (or parameters) a, b and c in the equation 

Y =  a + bX + cX2. The value of a represents the overall position of the curve up and down the Y axis; for 

example, an increase of 1 unit in a shifts the whole curve up the Y axis by 1 unit. The value of b represents 

the amount of overall upward or downward linear (straight-line) trend in the values of Y as you move along 

the X axis; in other words, if you draw a straight line to fit all the points well, b is the slope of the line, which 

is the same thing as the increase (or decrease, if b is negative) in Y for each 1-unit increase in X. For the 

http://www.sportsci.org/resource/stats/effectmag.html
http://www.sportsci.org/resource/stats/effectmag.html
http://www.sportsci.org/resource/stats/sscorr.html#nearly
http://www.sportsci.org/resource/stats/multiple.html#paradox
http://www.sportsci.org/resource/stats/logtrans.html
http://www.sportsci.org/resource/stats/logtrans.html
http://www.sportsci.org/resource/stats/repanova.html
http://www.sportsci.org/resource/stats/threetrials.html#estimates
http://www.sportsci.org/resource/stats/multiple.html
http://www.sportsci.org/resource/stats/linnonlin.html
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data in the figure, b would represent the change in attitude per year of experience. The value of c 

represents the amount of curvature in the data; in the present example, c would be negative, because the 

parabola is upside down. I find it easier to interpret c visually if I transform the X values so they range from -

1 to +1. If I then fit a curve with this new independent variable, the value of c that I get is about the amount 

that the values of Y sit above (or fall below, if c is negative) a straight line at either end of the X range. 

Remember that you can derive these coefficients or parameters as raw values, as percents, and as 

normalized regression coefficients, just like the slope in a simple linear regression. Make sure you interpret 

their magnitudes and their confidence limits! 

Caution! The linear term in a quadratic polynomial represents the overall effect as you go from low to high 

values of the independent variable. The quadratic term doesn't impact this overall effect--in fact, including 

the quadratic when there is curvature in the trend will make the estimate of the linear term more precise. 

But if you include a cubic term in the polynomial, the cubic also contributes to the overall effect of going 

from low to high values of the independent variable. This extra contribution of the cubic makes it 

impossible to interpret the linear term as representing the difference between low and high values 

of the independent variable. This problem is particularly important when you are using polynomial 

contrasts in a repeated-measures analysis, where the independent variable is time or trial number. The 

easiest way to avoid the problem is to avoid including a cubic or quintic in the polynomial. If you do include 

these higher order terms, and you want an estimate of the difference between the effect of low and high 

values of the independent variable (e.g., first test vs last test), you will have to derive an estimate for the 

high minus the low values. 

Don't forget that you can assess the contribution of each term of the polynomial to the variance 

explained (R2) by the model. If your stats program doesn't give you the R2 for each term, find the total sum 

of squares and the sums of squares for each effect in the output, then calculate the R2 for the quadratic 

term by dividing its sum of squares by the total sum of squares, multiplied by 100 to convert it to a percent. 

Phew! Interpret the R2 by taking its square root and working out the confidence limits of the resulting 

correlation, as described earlier. 

A Polynomial With a Nominal Effect 

The next figure shows an extension of the above model to test for differences 

between two sports. Let's build up the model term by term. We'll need sport as a 

main effect, to see how much overall difference there is in the mean attitude for the 

two sports: 

attitude <= sport 

The main trend with experience is linear, and we want to know about the differences 

in the slopes, so we need a full ANCOVA model: 

attitude <= sport  experience  sport*experience 

And finally, there is curvature for at least one sport, so we need to fit a quadratic term overall, and a 

quadratic term that might differ between the two sports. The way to do that is to include the quadratic term 

as a main effect and as an interaction with sport. So here's the full model: 

attitude <= sport experience sport*experience experience2 sport*experience2 

The p value for sport*experience2 tells you whether any difference in the curvature for the two sports is 

statistically significant. Once again you express this difference as a contribution to the overall R2 for the 

model, as described for the simpler example above. 
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 Two-Way ANOVA

 

model: numeric <= nominal1  nominal2  nominal1*nominal2 

example: training <= sex  sport sex*sport 

This model is like a one-way ANOVA with an extra grouping variable. I've put the 

groups up the Y axis to make it easier to show the names of the sports. The 

outcome variable (hours of training per week) is still the dependent variable, even 

though it is shown on the X axis. By the way, the two in two-way ANOVA refers to 

the two main effects in the model, not to the two levels for sex in this example. So 

a three-way ANOVA would have three main effects, and so on. Now let's see 

what each effect in the model tells us about the effects of sex and sport on 

training. 

The main effects are easy to understand. Sex tells us how different the training is between sexes overall. In 

these data it's obvious that the males are doing more training than the females. The numeric value for the 

difference would be given by the values of the two levels for sex in the solution for the model. You would 

get your program to perform an estimate or a contrast between the two levels of sex to get confidence 

intervals or p values. Note that the resulting value for the difference between sexes is equivalent to the 

difference you would get between the means for the males and the females with equal numbers of males 

and females in each of the three sports. If you have different numbers in each sport, the difference between 

the raw means for all the males and all the females will be different from the stats program's estimate of the 

difference. The estimate from the stats program is usually the one you're interested in. 

In a similar fashion, the sport effect gives overall differences between the sports. You would do pairwise 

estimates or contrasts to see how different the sports are from each other. In the example, runners are 

clearly different from cyclists and swimmers, but cyclists are about the same as swimmers, because the 

difference goes one way for females and the other way for males. Again, the estimates for the differences 

between sports are the same as what you would get with equal numbers of males and females in each 

sport. 

Which leaves us with the interaction. It tells us about the overall trend for differences in the sports within 

females compared with the trend within males. Well, it looks like something interesting is going on with the 

trends, because the means for the cyclists and swimmers swap over between females and males. To find 

out how big the differences are, you would do estimates or contrasts for the different levels of the 

interaction term. There are six levels in sex*sport: two for sex, and three for sport. In alphabetical order, the 

levels are female·cyclists, female·runners, female·swimmers, male·cyclists, male·runners, male·swimmers. 

The estimate of the magnitude of the female-male swap over for the cyclists and swimmers would be given 

by the value for (male·cyclists - male·swimmers) - (female·cyclists - female·swimmers). This difference in 

the differences is about one hour, so you'd say "males did relatively more cycling than swimming in 

comparison with females; the combined difference was about an hour..." And as before, think about the 

difference as what you would get with equal numbers of males and females in each sport. 

With luck your stats program will calculate confidence limits for all the differences between groups. It will 

certainly calculate p values anyway, and you can convert these to confidence limits by downloading a 

spreadsheet. 

Don't forget to keep one eye on the standard deviations when you compare means of groups. In the above 

example, many of the differences between groups are equivalent to at least one standard deviation (an 

effect size of at least 1.0), so they are moderate to large. Differences between standard deviations are also 

important. Notice that the standard deviations for the swimmers are about half those in the other sports. 

Maybe the swimmers all train in squads with similar training programs. That could be a problem, in more 

ways than one. First, if the subjects are drawn from just a few squads, their values of training will not be 

independent of each other, so we'll have to use repeated-measures modeling. And secondly, different 

standard deviations violate an assumption our usual analyses are based on. We can get around this 
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problem by transforming the training times. Log transform? No, the standard deviations would need to be 

bigger for more training. Rank transform? Yes, non-parametric analysis is called for here. Just rank the 

entire column of data for training, then do the analysis as usual. 

 More Than One Dependent Variable

 

These are called multivariate models. In other words, things like: 

jump  sprint <= sex  

You read this as: what is the effect of sex on a person's ability to jump and sprint? Sure, sex might have an 

effect on each of these separately, but let's put them together and look at the overall effect on both. This 

would be an example of multivariate analysis of variance (MANOVA). The test statistics are unusual (e.g. 

Hotelling t2, Wilks' lambda). 

Multivariate models are easy in principle, but in practice it's hard to interpret the outcome statistics. I advise 

you to analyze your dependent variables separately, or do a dimension reduction first, then analyze each 

dimension separately. 

Multivariate models have been adapted for analysis of repeated measures. For example, replace sprint in 

the above model with a second measurement of jump, and you could write: 

jump1  jump2 <= sex, 

where jump1 and jump2 are jump heights on the first and second occasion. I deal with this approach to 

repeated measures later. 

  

  Models With Variables of Uncertain Status

 

There's only one kind of model here, but it goes by various names: path analysis, structural equation 

modeling (SEM, not to be confused with standard error of the mean), and linear structural relationships 

(LISREL). 

I've never used this kind of modeling, so this section will be brief and untrustworthy. As far as I can see, the 

technique can be applied only in cross-sectional studies with hundreds of subjects. It represents an attempt 

to establish a chain of cause and effect between variables. The stats program does it by looking at all the 

correlations between all the variables, then creating the best chain, like so: 

numeric <= numeric <= numeric <= numeric... 

The program produces correlations for each link, and a correlation between the variable on the far right (the 

cause) and the far left (the effect). Validity of measurement for each variable, where known, can be taken 

into account. 

There is now a huge literature on this topic, which in my opinion goes way beyond what is justified for 

cross-sectional data. Let's face it, cross-sectional studies can only ever provide suggestive evidence; in the 

end you need longitudinal studies to nail cause and effect. That's where repeated-measures models come 

to the fore. Read on. 

 

 

 

 

http://www.sportsci.org/resource/stats/logtrans.html
http://www.sportsci.org/resource/stats/nonparms.html
http://www.sportsci.org/resource/stats/threetrials.html#manova
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  REPEATED MEASURES MODELS

 
So far, all the models we have looked have been for data from cross-sectional or descriptive studies. 

These are studies in which each person is observed only once, so for each variable you have only one 

value per person. To put it another way, each row in the data set is for a different subject. 

Now, what about longitudinal studies, in which people are observed more than once? In particular, what 

about interventions or experiments, where you compare values of a dependent variable before and after 

you try something like a training program or a potentially active drug? You can analyze data from these 

studies with the procedures used for cross-sectional data only if you can assume that the residuals are 

uniform--have the same standard deviation--for each of the repeated measurements. But in general, 

you can't assume such uniformity: subjects will show more variation on some repeated measurements than 

on others, usually because of differences between measurements in the effects of time or the treatment. So 

you have to use repeated-measures models. 

We'll start on this page with the simple case of only two trials for only one group of subjects (no between-

subject effect). On the next page I'll extend it to several groups (a between-subjects effect, e.g. an 

experimental and control group). Then I'll deal with more than two trials, first without a between-subjects 

effect, then with a between-subjects effect, before I deal with other repeated-measures models including 

the simple, robust approach of within-subject modeling. Then there is a page on how to use the mixed 

procedure in the Statistical Analysis System, with links to . Finally, I devote a page to a problem that can 

arise in repeated-measures analyses, regression to the mean. But first, some other resources I have 

created since writing these pages: a slideshow, a stand-alone article, and some spreadsheets. 

Slideshow on Repeated Measures 

For a Powerpoint slideshow (340 kB) dealing with most aspects of repeated-measures analyses, click here. 

I presented this talk at the 2003 annual meeting of the American College of Sports Medicine. The sections 

are Basics (analysis by ANOVA, within-subject modeling, and mixed modeling; fixed and random effects; 

individual responses and asphericity), Accounting for Individual Responses, Analyzing for Patterns of 

Responses, and Analyzing for Mechanisms. The information in the slide show complements the information 

on these pages. Read both. 

Articles and Spreadsheets for Straightforward Repeated Measures 

I have created spreadsheets for analysis of repeated-measures data from controlled trials and crossovers. 

You add the raw observations, the spreadsheet does the rest. I have also written articles at the 

Sportscience site explaining important issues in such analyses, and how the spreadsheets address them. 

(Links to the Sportscience articles will not work if you are using a copy of these pages off-line.) 

Click to view the 2006 article, which explains the use of a covariate and has links to earlier articles. See 

also an article on the different kinds of controlled trials in the 2005 issue, which explains the names I have 

used below for the spreadsheets. 

Click to download the spreadsheet for pre-post parallel-groups trials, the spreadsheet for post-only 

crossovers (which also works for the paired t-test model on this page), and the spreadsheet for pre-post 

crossovers. The following links will download earlier version that do not include the covariate and other 

enhancements: spreadsheet for controlled trials, spreadsheet for crossovers, and fully controlled 

crossovers.  

 

 

 

 

http://www.sportsci.org/resource/stats/twotrials.html
http://www.sportsci.org/resource/stats/threetrials.html
http://www.sportsci.org/resource/stats/threetrials.html
http://www.sportsci.org/resource/stats/threetrialsplus.html
http://www.sportsci.org/resource/stats/otherrems.html
http://www.sportsci.org/resource/stats/otherrems.html#within
http://www.sportsci.org/resource/stats/procmixed.html
http://www.sportsci.org/resource/stats/procmixed.html
http://www.sportsci.org/resource/stats/regmean.html
http://www.sportsci.org/resource/stats/Analysis_of_repeated_measures.ppt
http://sportsci.org/2006/wghcontrial.htm
http://sportsci.org/jour/05/wghamb.htm
http://www.sportsci.org/resource/stats/xParallelGroupsTrial.xls
http://www.sportsci.org/resource/stats/xPostOnlyCrossover.xls
http://www.sportsci.org/resource/stats/xPostOnlyCrossover.xls
http://www.sportsci.org/resource/stats/xPrePostCrossover.xls
http://www.sportsci.org/resource/stats/xPrePostCrossover.xls
http://www.sportsci.org/resource/stats/xcontrial.xls
http://www.sportsci.org/resource/stats/xcrossover.xls
http://www.sportsci.org/resource/stats/xcontrialxover.xls
http://www.sportsci.org/resource/stats/xcontrialxover.xls
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  Paired T Test or Repeated-Measures ANOVA with two trials and no between-subjects effect 

model: numeric <= (subject)  trial 

example: jumphgt <= (athlete)  time 

 

Don't try to understand the model yet. Just look at the example in the figure, which shows individual values 

on the left and means and standard deviations on the right. There is one measurement on each of eight 

athletes before (pre) and after (post) a training program aimed at increasing jump height, with no control 

group. This sort of design is sometimes described as one in which the subjects "act as their own controls", 

although this description fits any longitudinal study, whether or not there is a control group. 

The results can be displayed as shown in the left-hand panel, with pre and post heights linked for each 

subject. The right-hand panel shows the more usual way of connecting the means by a line. By the way, it's 

wrong to use a bar graph, because the pre and post data are from the same subjects. 

It doesn't look anything like it, but this model is actually a two-way ANOVA. If I'd drawn bars instead of 

points for the pre and post heights, you might have seen that it is at least a one-way ANOVA, time being 

the nominal effect (with two levels, pre and post), and height the dependent numeric variable. So let's get 

started with jumphgt <= time. 

The other effect is hidden in the right-hand figure, but it's clear in the left-hand side: the identity of the 

subjects. We introduce this variable as a way to link each subject's measurement of height at the pre and 

post times. Hence the full model: jumphgt <= (athlete)  time. In the general model, one term in the ANOVA 

is the identity of the subjects, and the other term is the identity of the time points or trials. 

  

Hang on. Why (athlete) rather than athlete? Well, the variable representing the identity of the subjects is a 

bit different from all the other variables we've met so far. The subjects are usually a random sample of a 

population, so this variable is known as a random effect. If we repeated the study, we could have a 

different sample of subjects, each with different values drawn randomly from the population. In contrast, the 

identity of the time points is a fixed effect, because this variable would have the same values and levels 

(pre and post) in any repeat of the study. Look back at the nominal variables in the other models we've 

dealt with and you'll see that they are all fixed effects. For example, sex always has values male or female 

in every sample, and we assume the effect of maleness or femaleness is the same for every male or 

female. For more information on fixed and random effects, see the slideshow on repeated measures. If you 

want to work with mixed models, make sure you get familiar with my "hats" metaphor for random effects, as 

explained in the slideshow. 

So, I've put parentheses around the subject term to indicate that it's a random effect, and to let you know 

that stats programs don't normally include the subject term in the model in the way that I have here. If I left 

the parentheses out, I would imply that the subject term is a fixed effect. It is possible to analyze your data 

as a straightforward non-repeated-measures ANOVA with the subject term as a fixed effect, but the results 

you get are appropriate only for repeated-measures data that have uniformity of residuals. I deal with that 

later under the heading sphericity or covariance structure. 

We don't have the interaction term athlete*time in the model, partly because athlete is a random effect, and 

partly because we would need multiple measurements for subjects at the pre and post time points for the 

interaction term to make any sense. Let's leave aside this complexity. 

http://www.sportsci.org/resource/stats/repanova.html#rmslide
http://www.sportsci.org/resource/stats/threetrials.html
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It all sounds awfully complicated, but in practice it's straightforward. You have two lots of measurements 

performed on the same subjects, and all you want to know is how the means have changed. Most stats 

programs can do that for you without you having to worry about models like the above. All you do is click up 

a paired t test, which produces a p value for the difference in the means, and hopefully a confidence 

interval. The paired t test has the same internal workings as the unpaired t test, which is why they share the 

same name. 

On the next page we'll add a control group. After all, the athletes might jump higher in the post test simply 

because they have learned how to do the test, not because they responded to your training program. A 

group that does everything the same as the experimental group, other than the training program, "controls" 

for this and other problems. But the main reason I'm talking about a control group now is to explain the 

terminology in the heading for this page. Having a control group in a repeated-measures design is an 

example of a between-subjects effect, because there are different subjects in the control and 

experimental groups. Hence no between-subjects effect in the title of this section. Time or trial is a within-

subjects effect, because the same subjects experience the different levels of that effect. 

 

  Repeated-Measures ANOVA with two trials plus a between-subjects effect 

model: numeric <= (subject)  group  trial  group*trial 

example: jumphgt <= (athlete)  group   time  group*time 

Let's take the experiment on the previous page, where we attempted to increase jump 

height with some sort of experimental treatment. As before, we measure jump height 

pre and post the treatment in a group of subjects, the experimental group (exptin the 

figure). But now we also have a second group who get a different treatment, and the 

aim of the experiment is to compare the change in jump height in the two groups. If 

that different treatment is nothing at all, or a sham treatment (a placebo), the second 

group is called a control group--hence the name for this sort of experiment, 

a controlled trial. 

Let's analyze it the easy way first. For each subject, subtract the pre height from the post height to get a 

change score. Now compare the change scores in the two groups using an unpaired t test. Use the 

unequal-variances version of the t test, because the standard deviation (square root of the variance) of the 

change scores in the experimental group is likely to be larger than that in the control group, owing to 

individual responses to the treatment. The spreadsheet for controlled trials can do it all for you. If you have 

three groups (e.g. two experimental groups and one control group), use a new spreadsheet for each 

pairwise comparison of groups. You can also use a one-way ANOVA on the change scores, but beware: 

ANOVA assumes equal variances (standard deviations) of the change scores in all the groups. See 

the slide show on repeated measures for an explanation of these subtleties. 

Now for the model, which is the hard way. We have to do it, though, because you need to understand the 

model for later complexities with repeated measures. Let's start with the simple model from the previous 

page: 

jumphgt <= (athlete)  time   

This model represents the obvious fact that jump height is affected by time (depends whether it's the pre-

test of the post-test) and the identity of the athlete (depends how good a jumper s/he is). But we now have 

two groups of subjects (control and expt), so we have to add a term to show that athletes in one group 

could jump differently from those in the other: 

jumphgt <= (athlete)  time  group 

Technically the model is now a three-way ANOVA, but no-one ever calls it that. OK, what tells us whether 

the experimental group did better in the post test, relative to the control group? The group effect? No, this 

term represents the overall difference between the groups, counting pre and post tests. We're missing a 

http://www.sportsci.org/resource/stats/repanova.html#article
http://www.sportsci.org/resource/stats/repanova.html#rmslide
http://www.sportsci.org/resource/stats/repanova.html#pairedt
http://www.sportsci.org/resource/stats/repanova.html#pairedt
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term, of course: the interaction time*group. This term is the first thing you look at to see how your treatment 

worked.. So the full model is: 

jumphgt <= (athlete)  time  group  time*group 

By the way, the order of time and group in the model is irrelevant, and time*group is the same as 

group*time. 

The data for this model seem simple enough (pre and post means and SDs for two groups), but interpreting 

the substantiveness/significance of each term in the model can be confusing. So here are examples 

illustrating the eight possible combinations of insubstantial and substantial effects for the different terms in 

the model. Don't go past this section until you understand all eight parts of this diagram: 

 

The last two examples on the lower right are the ones we usually want in a study: no difference between 

the control and experimental groups in the pretest, and a nice big divergence on post-test. The fact that 

main effects are substantial in these two examples is irrelevant. The other two examples with a substantial 

interaction also illustrate treatments that worked, but the outcomes are not ideal, because in both cases the 

groups are different in the pretest. A worry, because it means that one or both of the groups can't be 

representative of the population, at least as far as jump height is concerned. And non-representative 

samples mean non-generalizable findings! 

Finally how do we calculate the magnitude of the experimental effect? Easy. The post score minus the pre 

score for the experimental group is the main thing, but we have to subtract off any change in the control 

group. To do it as an estimate or contrast in the repeated-measures ANOVA, combine the four levels of 

time*group in the following way: (post·expt - pre·expt) - (post·cont - pre·cont). 

  

Special Case: Simple Crossovers 

 In a simple crossover design, half the subjects get a control treatment followed by an experimental 

treatment, while the other half get the treatments the other way around. People usually analyze the data as 

a simple paired t test, which means they effectively subtract the control response from the experimental 

response for each subject, without regard for the order of treatment. In a minute I'll show you a better way, 

using the above ANOVA model, and I'll generalize it to multiple crossovers. First, more about simple 

crossovers. 

Why split the subjects into two groups and cross the treatments over? Because if all subjects get the 

control and experimental treatments in the same order, you won't know whether any change you see is 

truly an effect of the treatment, or just an effect of being tested a second time--a practice or learning 

effect. When you split the subjects, the group that gets the control first has the practice effect added to the 

experimental treatment, whereas the group that gets the experimental first has the practice effect added to 

the control treatment. So when you average the difference scores, the practice effect disappears and you 

are left with the treatment effect, provided the two groups have the same number of subjects. 

Fine, but there's a problem. When there is a practice effect, you get two clusters of difference scores. For 

example, if the practice effect is about the same size as the treatment effect, one set of difference scores 

will be around zero, and the other will tend to be twice as large as the treatment effect. The average is still 

http://www.sportsci.org/resource/stats/repanova.html#pairedt
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equal to the treatment effect, but the effect appears to be more variable between subjects. The result is a 

bigger (worse) confidence interval for the treatment effect, or a bigger (worse) p value, or less power to 

detect the treatment effect. 

Another potential problem is carry over. For the group that gets the experimental treatment first, it's 

important that any effect of the treatment disappears by the time that group gets the control treatment--

otherwise the difference between control and experimental treatments for that group will be reduced. The 

result will be an apparently smaller treatment effect overall, and an apparent practice effect. For example, if 

the treatment effect carries over completely, the analysis will produce a treatment effect that is half its true 

value, and an apparent practice effect of the same magnitude. So you can't do a training study as a 

crossover, unless you are confident that the adaptations produced by the experimental training program 

decay away before subjects get the control program. 

You might be able to get over the problem of carry over by increasing the time between the two treatments. 

But the longer the time, the less reliable the dependent variable is likely to be, which means a wider 

confidence interval for the difference between the treatments. 

One way around the problem of practice and carry-over effects is to throw out the crossover altogether. 

Replace it with a properly controlled study, in which you split the subjects into two groups, give both groups 

a pre-test, then administer the control treatment to one group and the experimental treatment to the other, 

and finally do a post-test on both groups. Any practice effect should be the same for both groups, so it 

disappears when you calculate the change in the experimental group minus the change in the control 

group. 

So why bother with a crossover at all? For a very good reason: you get the same confidence interval for the 

treatment effect with one quarter the number of subjects as in a fully controlled design, provided there are 

no practice and carry-over effects. For such a big saving in time and expense, always consider a crossover 

before a fully controlled study. Minimize any carry-over effect by allowing adequate time between the 

treatments. And don't worry about the practice effect, because ANOVA takes care of it. Here's how: 

model: numeric <= (subject)  treat  group  treat*group 

example: jumphgt <= (athlete)  treat  group  treat*group 

The figure shows data for an example of a simple crossover, in which an 

experimental treatment increased jump height relative to a control treatment. I've 

separated the data for the two groups (control treatment first, experimental treatment 

first) to illustrate a practice effect, which adds to the difference between experimental 

and control treatments for the group that had the control treatment first, but reduces 

the difference for the other group. The data also illustrate that randomization of 

athletes to the two groups resulted in one group (expt first) being somewhat better 

jumpers overall. 

The model has the same form as the model at the top of this page, but the time effect is now replaced with 

treat, which has two levels (cont and expt). The other main effect, group, now represents which group each 

subject was assigned to (contfirst, exptfirst). The interaction term treat*group has four levels (cont·contfirst, 

cont·exptfirst, expt·contfirst, and expt·exptfirst). 

The difference between the two levels of the treatment effect (expt - cont) tells you the thing you're most 

interested in: how well the treatment worked relative to control. The difference between the two levels of the 

group effect (exptfirst - contfirst) tells you how different your two groups of subjects were, so it's a measure 

of how well you randomized your subjects to the two groups. The interaction gives you the size of the 

practice effect, and I'll leave you to figure out that the appropriate contrast is 0.5*(expt·contfirst - 

expt·exptfirst - cont·contfirst + cont·exptfirst ). If that's too challenging, here's another way to get the 

practice effect. First, make another repeated-measures variable called trial in your data set. Trial is almost 

the same as treat, but trial has values of the dependent variable corresponding to the first and second trial, 

whereas treat has values corresponding to control and experimental treatments. Now do the ANOVA with 

group, trial, and group*trial in the model. The practice effect comes straight from trial in this model. 

http://www.sportsci.org/resource/stats/ssdetermine.html#long
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Get your stats program to give you confidence intervals for all these contrasts, please, not just the p values! 

And if you plot your data for publication, show the two groups as I have done in the above example. 

A bonus for this method of analyzing crossovers is no absolute requirement for an equal number of 

subjects in each group. It's still best to have equal numbers, but if you get dropouts in one group, the 

resulting treatment effect is not biased by any practice effect. It would be biased if you used a paired t test 

to analyze the data. 

  

Users of the Statistical Analysis System have the option of modeling the data in a slightly more intuitive 

way. Instead of having a group effect in the model, use a variable called trial, which has 

values first and second (or 1 and 2). This variable indicates whether the given observation represents each 

subject's first or second trial or test. Here's the model: 

model: numeric <= (subject)  treat  trial  treat*trial 

It looks similar to the previous model, but trial is actually a second within-subject factor, which we haven't 

dealt with yet. It turns out that traditional methods of repeated-measures ANOVA can't handle this model, 

because each subject has values for only two of the four combinations of treat and trial. But the new mixed 

procedure in SAS handles it brilliantly. Just use the treat term to get the estimate of the difference between 

the experimental and control treatments, and use the trial term to get the practice effect. An appropriate 

combination of the levels of treat*trial gives the difference between the means of the two groups of subjects 

with treatment and practice effects partialed out, if you want to check how evenly the subjects were 

randomized to the two treatment sequences. 

The above models can be generalized to multiple crossovers: crossovers with several treatments. More 

about those after the next page, which deals with more than two trials. 

  
Repeated-Measures ANOVA with three or more trials and no between-subjects effect 

model: numeric <= (subject)  trial 

example: jumphgt <= (athlete)  time 

 

Check back and you'll see it's the same model as for two trials with no between-subjects effect: adding 

extra trials doesn't usually mean a different model. This kind of design--multiple repeated measurements 

without a control group--is sometimes called a time series. In the above example, there are two trials (pre1 

and pre2) to establish a baseline of performance before some kind of treatment, then two trials (post1 and 

post2) to see the effect of the treatment. There's a big effect at post1, but it's wearing off by post2. 

One way to analyze these data is to do a series of paired t tests. Post1 vs pre2 is the first comparison you 

would want to do. You'd also be interested in post2 vs post1, and possibly pre2 vs pre1, post 1 vs the mean 

of pre1 and pre2, and so on. An analysis that takes into account all the tests is more elegant and more 

powerful. The trouble is, generally we can't analyze such data using conventional ANOVA. The example 

shows several reasons why. See if you can spot them before reading on. 

You should have noticed that the standard deviation is bigger for the post1 and post2 trials. Different SDs 

are a problem for conventional ANOVA, but if that was the only problem, we could fix it by doing a non-

parametric analysis via rank transformation of the dependent variable. No, the real problems are apparent 

only when you look at the data for the individual athletes. One of them appears to be a negative 

http://www.sportsci.org/resource/stats/otherrems.html
http://www.sportsci.org/resource/stats/threetrialsplus.html#multicross
http://www.sportsci.org/resource/stats/repanova.html#pairedt
http://www.sportsci.org/resource/stats/nonparms.html
http://www.sportsci.org/resource/stats/nonparms.html
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responder to the training program, and another is possibly a non-responder. What's more, the ordering of 

the subjects between pre2 and post1 or between post1 and post2 was not nearly as good as the ordering 

between the baseline tests. It's this change in consistency of ordering, or to give it its statistical term, the 

change in reliability between tests, that stymies the normal ANOVA. Individual differences in the response 

to the treatment between subjects is the reason for the loss of ordering here. 

A change in reliability shows up as different correlations between pre1 and pre2, pre2 and post1, etc. When 

these correlations get too different and/or the standard deviations get too different, it's called loss of 

sphericity or asphericity. Statisticians examine sphericity in something called a covariance matrix, which 

neatly summarizes correlations and standard deviations for all the levels of the within-subject effect (time or 

trial). I will provide more information about covariances soon on the page devoted to the use of Proc 

Mixed in the Statistical Analysis System. Meanwhile, let's look at the three fixes for this problem. 

  

Fix #1: Multivariate ANOVA 

 Someone worked out that you can treat the values of the dependent variable for each trial as separate 

dependent variables. In our example, jumphgt becomes jumphgt1 (values at pre1), jumphgt2 (values at 

pre2), etc. The data set would look like this: 

jumphgt1 jumphgt2 jumphgt3 jumphgt4 

163 165 171 168 

167 166 170 167 

etc. etc. etc. etc. 

Notice that time as a variable has disappeared: it's been absorbed into the four new variables for jump 

height, but it reappears as a within-subjects factor when you run the analysis. The variable subject has also 

disappeared: it's not needed, because there is only one row per subject and no ambiguity is possible. 

It's difficult to write these four new variables into a model. Obviously they go on the left-hand side, like so: 

jumphgt1  jumphgt2  jumphgt3  jumphgt4 <= 

but what goes on the right-hand side? Nothing! Looks silly, but SAS makes you show it like this when you 

analyze a data set like the above. 

I don't recommend the multivariate ANOVA approach. For starters, all it provides is a p value for the overall 

effect of time. It doesn't provide estimates or p values for the individual contrasts of interest (post1 minus 

pre2 etc.). What's more, I've shown by doing simulations that the p value it does produce is too big with 

some kinds of data and too small with others. Another big problem is missing values: if one of your 

subjects missed one of the tests, that subject is omitted from the analysis entirely. 

  

Fix #2: Adjusted Univariate ANOVA 

 This method has been the most widely used. The analysis is done as a conventional two-way ANOVA with 

one dependent variable (hence univariate) and effects for subject and trial (time in our example). The 

program then uses the covariance matrix to come up with a correction factor that leads to a different p 

value for the effect of trial. You choose from two factors: Greenhouse-Geisser epsilon or Huynh-Feldt 

epsilon. 

  

Fix #3: Within-subject Modeling 

 In this approach, you avoid the problems of repeated measures by not doing them! Instead, you convert 

each subject's repeated measurements into a single number, then do paired or unpaired t tests or simple 

ANOVAs on those numbers. I explain this approach later and in the slideshow. 

  

Fix #4: Modeling Covariances (Mixed Models) 

 Suppose you have data like the previous example, where the standard deviations and correlations for the 

http://www.sportsci.org/resource/stats/precision.html
http://www.sportsci.org/resource/stats/procmixed.html
http://www.sportsci.org/resource/stats/procmixed.html
http://www.sportsci.org/resource/stats/otherrems.html#within
http://www.sportsci.org/resource/stats/repanova.html#rmslide
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repeated measures are all over the place. Don't adjust for them: make them part of the model! Yes you can, 

with Proc Mixed in the Statistical Analysis System (SAS). It's a major breakthrough. The procedure is 

known as modeling covariances, because standard deviations and correlations can be expressed more 

generally as covariances (nothing to do with analysis of covariance, by the way). Unfortunately the 

instructions for the procedure that does it in SAS are incomprehensible to all but highly trained statisticians. 

But if you can find one of those, you will be delighted, for the following reasons: 

 This method of modeling can handle missing values! No longer do you lose the entire data for a 

subject who missed one or two tests. 

 You can dial up just about any structure of standard deviations and correlations. 

 The model starts to look like a proper univariate ANOVA again. Unfortunately you still don't specify 

the subject term in a natural way (as an overt effect in the model), not in SAS anyway. The model 

statement is reserved for fixed effects. The model for our example would be jumphgt <= time. You 

specify the identity of subjects as a random effect. 

 The data set is submitted in the more natural univariate format. For example: 

athlete time jumphgt 

Jo pre1 163 

Jo pre2 165 

Jo post1 171 

Jo post2 168 

Kim pre1 167 

etc. etc. etc. 

By the way, the term mixed refers either to the fact that you are modeling a mixture of means and 

covariances, or (same thing) to the fact the model consists of a mixture of random and fixed effects. The 

subject term in a repeated-measures model is a random effect. Random effects produce variance that has 

to be accounted for in the model. 

I have now added SAS programs for analyzing repeated-measures data with the mixed procedure in SAS. 

Link to them from the page devoted to Proc Mixed. 

  

Estimates or Contrasts 

 OK, let's assume we've got a method that accounts for lack of sphericity. Now for the question of estimates 

or contrasts between the mean jump heights at the different times. You can dial up any contrast you like, if 

you and the stats program are good enough! For example, was the jump height straight after the 

intervention higher than the mean of the baseline values (and what's the confidence interval on the 

difference)? Some stats programs offer standard contrasts. Examples: One level with every other, would 

be the obvious contrast to apply to post1 in the above example. Each level with the one immediately 

preceding is good for determining where a change takes place in a time course, although you can easily 

get the situation where no successive contrasts are significant, and yet there is obviously a significant trend 

upwards or downwards. That's where polynomial contrasts come to the rescue: the ANOVA procedure 

fits a straight line, and/or a quadratic, and/or a cubic, etc. to the means. 

Polynomial Contrasts 

 Here's an example of data that would be ideally suited to fitting a straight line and a quadratic. It's jump 

height and time again, but I've added an extra time point and made a curvilinear trend: 

http://www.sportsci.org/resource/stats/procmixed.html
http://www.sportsci.org/resource/stats/repanova.html#random
http://www.sportsci.org/resource/stats/procmixed.html
http://www.sportsci.org/resource/stats/ttest.html#contrasts
http://www.sportsci.org/resource/stats/ttest.html#contrasts
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The magnitude and significance of the linear component would tell you about 

the general upward trend in performance, while the quadratic component would 

tell you how it is leveling off with time. If your stats program's a good one, it will 

offer polynomial contrasts as an option. Otherwise you will need a high-

powered helper to combine the levels of the time effect in a way that generates 

the coefficients of the polynomials. You can adjust for unequal intervals 

between the time points, too, if your stats program or helper are really good. 

(SAS users can fit a polynomial directly in the model with Proc Mixed.) 

By the way, what if the data in the above figure were not repeated measures? In other words, what if there 

were different subjects at each time point? For example, the data could represent level of physical activity 

in samples drawn from a population at monthly intervals. Could you still do polynomial contrasts? Of 

course. You do it within a normal ANOVA. 

Controlling Type I Error with Repeated Measures 

 Keeping the overall chance of a type I error in check efficiently for multiple contrasts between levels of a 

repeated-measures factor seems to be theoretically difficult. The SAS program simply doesn't offer the 

option. I don't worry about it anyway, because I don't believe in testing hypotheses. If you are a p-value 

traditionalist, use the Bonferroni correction. And as I explained earlier, do specific estimates/contrasts 

regardless of the p value for the overall effect. 

  Repeated-Measures ANOVA with three or more trials plus a between-subjects effect 

 

model: numeric <= (subject)  trial  group  trial*group 

example: jumphgt <= (athlete)  time  group  time*group 

You should be able to see that this model is the previous two merged together. 

The interpretations of the main effects and interaction term from the first of the 

previous models (two time points, two groups) still apply. And all the problems 

with sphericity from the model on the previous page (three or more trials in one 

group of subjects) still have to be addressed. 

To summarize: 

 Use univariate ANOVA with adjustment for non-sphericity, or model the 

covariance matrix with proc mixed and/or a statistician. 

 Trial*group tells you how the experiment worked. 

 Contrasts between different levels of trial and group for the trial*group term tell you where the 

experimental group differs from the control or other groups. 

 Get the program to give you estimates and confidence intervals, not just contrasts and p values. 

If you didn't know any better, you might try to analyze these data by doing a series of unpaired t tests for 

each time point. That would be foolish, for three reasons: the power to detect differences would be lousy, 

because you would not be making use of changes in each subject's values; you would not be taking into 

account any differences between the two groups at baseline; and finally you would not impress the 

reviewers and editor of the journal you submit the research to. You could fix the first two criticisms by 

subtracting each subject's mean baseline value from the post1 and post2 values, then doing unpaired t 

tests on these difference scores. 

  

Special Case: Multiple Crossovers and Latin Squares 

 Recall that a simple crossover is a design in which all subjects receive two treatments. We analyzed the 

data with a treatment effect and a group effect that indicated which treatment each subject got first: 

model: numeric <= (subject)  treat  group  treat*group 

example: jumphgt <= (athlete)  treat  group  treat*group 

http://www.sportsci.org/resource/stats/procmixed.html
http://www.sportsci.org/resource/stats/ttest.html
http://www.sportsci.org/resource/stats/errors.html#inflation
http://www.sportsci.org/resource/stats/errors.html#inflation
http://www.sportsci.org/resource/stats/ttest.html#contrasts
http://www.sportsci.org/resource/stats/twotrials.html
http://www.sportsci.org/resource/stats/threetrials.html
http://www.sportsci.org/resource/stats/procmixed.html
http://www.sportsci.org/resource/stats/twotrials.html#crossover
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OK, but what about more than two treatments? For example, can we have a crossover in which every 

subject gets a control treatment and two experimental treatments aimed at increasing jump height? Sure, 

just use the above model. Treat is the repeated-measures or within-subject effect, with three or more 

levels. The group effect represents the sequence of treatments that each subjects is assigned to, and it 

also has three or more levels, as we'll see. And in the same manner as for a simple crossover, with SAS 

you can use a trial effect instead of a group effect to indicate whether each treatment was first, second, 

third... for each subject (see earlier): 

model: numeric <= (subject)  treat  trial  treat*trial 

Whichever model you use, the good news is that you still need only about a quarter of the subjects of a fully 

controlled study! Here's how to set up and analyze these multiple crossovers. 

First, randomize your subjects to the various sequences of treatments. For example, if you have two 

experimental treatments (A and B), and a control treatment (C), there are six possible sequences: A-B-C, 

A-C-B, B-C-A, B-A-C, C-A-B, and C-B-A. It's best to use all these sequences, because if one of the 

treatments has a carry-over effect, it will affect all the other treatments equally. 

Next, decide on sample size. By running a simulation for this design, I've found that about 12 subjects give 

acceptable confidence limits for the pairwise comparisons of the treatment effects, for very high reliability 

(r=0.95). So you could start with two subjects doing each of the six sequences of treatments, then do more 

subjects if necessary, as described in sample size on the fly. If one or two subjects miss a treatment, or if 

you lose one or two subjects completely, no great problem: the data don't have to be "balanced" to give 

unbiased estimates, provided none of the treatments carry over. 

Now do the work, get the data, and analyze them. If you can use proc mixed in SAS, I recommend the 

crossover model with trial: it gives slightly better confidence intervals, and it's easy to estimate the learning 

effects from the levels of the trial effect (e.g. for three treatments there's one learning effect between first 

and second trials and another between second and third trials). See the simulation for the program 

statements. Non-SAS users will have to use the usual crossover model with a group effect, but it's 

fiendishly difficult to work out the appropriate combination of levels of treat*group to get the learning effects. 

How best to plot data for a multiple crossover? For a simple crossover I suggested 

showing the means for the two groups of subjects for control and experimental 

treatments. That approach is no good for multiple treatments, because there'll be 

too many groups and not enough subjects in each group. One solution is simply to 

plot the means for each treatment. Connect all the points together, as I have done 

in the figure, to show they all have the same repeated-measures relationship to 

each other. Or if the treatments can be put into a sensible order, such as an 

increasing dose of something, plot the treatments in order along the X axis and 

connect the points sequentially. Either way, you shouldn't use a bar graph. 

Standard deviations are a problem with multiple crossovers. You could plot the standard deviations for 

each treatment, but they will be inflated by any learning effects. Stats wizards using proc mixed in SAS can 

extract the composite between-subject SD from the ANOVA. This SD includes within-subject retest error, 

but it is not affected by the treatment and learning effects. It's therefore the best measure of variation by 

which to assess visually the magnitude of the treatment effects shown in your plot. 

In the text of the Results section, give the raw differences between the means for the treatments and the 

confidence intervals for these differences. Or when appropriate (e.g. for most athletic performance 

measures), show percent differences and their confidence intervals, as provided by analysis of log-

transformed performance measures. 

  

When there are four treatments altogether (e.g. a control and three experimental treatments), there are 24 

possible sequences of treatments. You could randomize one subject to each sequence of treatments, but 

you might not need 24 subjects to get acceptable confidence limits for your comparisons. But with random 

assignment of less than 24 subjects, you might not end up with balance in the way treatments follow each 

http://www.sportsci.org/resource/stats/twotrials.html#modeltrial
http://www.sportsci.org/resource/stats/crossim.html
http://www.sportsci.org/resource/stats/ssonthefly.html
http://www.sportsci.org/resource/stats/crossim.html
http://www.sportsci.org/resource/stats/logtrans.html
http://www.sportsci.org/resource/stats/logtrans.html
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other. A problem if one of the treatments has a carry-over effect, because it will have the greatest effect on 

the treatment that follows it most times. So it's better to randomize to a subset of sequences that ensures 

every treatment follows every other treatment the same number of times. Any carry-over effect will then 

affect every other treatment equally. Such a balanced subset of sequences is called a Latin square. Here's 

the Latin-square set for four treatments, A, B, C, and D: 

Sequence 1: A B C D 

Sequence 2: B D A C 

Sequence 3: D C B A 

Sequence 4: C A D B 

Check and you'll see that each treatment follows every other treatment only once. Your sample size 

obviously has to be a multiple of 4 to keep the balance. For example, for 12 subjects, assign three at 

random to each of the four sequences. 

Here's a balanced set of sequences for five treatments. In this case you need 10 sequences to keep the 

balance (and each treatment is followed by every other treatment twice), so you'll need multiples of 10 

subjects in your study: 

1: A B C D E      6: E D C B A 

2: B D A E C      7: C E A D B 

3: D E B C A      8: A C B E D 

4: E C D A B      9: B A D C E 

5: C A E B D     10: D B E A C 

We're into seldom-trodden territory now, but I must record the trick of generating these Latin squares, in 

case you want to do more than five treatments. Instead of labeling the treatments with letters (A, B, C...), 

let's label them with numbers (1, 2, 3...). Assume n treatments. Here is the Latin square for n even. As 

above, the sequences of treatments are given by the rows, not the columns: 

1 2 n 3 n-

1 

4 n-

2 

. . 

2 3 1 4 n 5 n-

1 

. . 

3 4 2 5 1 6 n . . 

. . . . . . . . . 

. . . . . . . . . 

         

For n odd, use the above set of sequences, plus its mirror image. Check out the sets for five treatments 

given above, to see what I mean. Thanks, Dennis Loiselle! 

 

 

 

 

 

 

 

mailto:ds.loiselle=AT=auckland.ac.nz
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 Other Repeated-Measures Models 

 
I deal with several here: an extra between-subject effect (example: male and female subjects), two or more 

within-subject factors (example: the same subjects get several treatments at several time points), a general 

type of within-subject model (you fit data to each subject separately, then combine the fits), inclusion 

of covariates in the model to analyze for individual responses, trends in repeated sets of trials, and 

mechanisms, and finally troublesome variables that might require transformation or more advanced 

approaches. 

An Extra Between-Subject Effect 

  

model: numeric <= (subject)  trial  group  trial*group 

                                               sex  sex*trial  sex*group  sex*trial*group 

or simply: numeric <= (subject)  trial | group | sex 

example: jumphgt <= (athlete)  time | group | sex 

 

I've used the first example from the previous page. The only difference is that we now know our subjects 

are a mixture of males and females. The analysis gets complicated, because sex could affect everything--

that's why there are so many interaction terms in the model. But we're usually interested only in the extent 

to which the sexes differ for the effect of the treatment, so that means comparing the appropriate levels of 

sex*trial*group. In short, find the levels for trial*group that tell you what you want to know, then find the 

difference between those for the females and those for the males in the sex*trial*group term. 

A word of warning! The term trial*group gives you the overall effect of the treatment between the 

experimental and control groups, but with sex in the model it's the average of the effect on the females and 

males. In other words, it's the expected effect of the treatment with equal numbers of males and females, 

even though your sample may have had unequal numbers. 

The simple notation of a vertical bar ( | ) between effects is what the Statistical Analysis System uses to 

indicate that you want to include all possible main effects and interactions in the analysis. I usually leave 

them all in, because I subscribe to the idea that all independent variables have some effect on the outcome 

variable, however small. The only harm that can come from including all the interaction terms is loss of 

degrees of freedom, and therefore widening of the confidence intervals. On the other hand, if the effects of 

sex on the treatment are substantial, then inclusion of sex*trial*group will actually make the confidence 

intervals smaller, because it will eliminate the variability in the effect of the treatment that was due to sex. 

In any case, if the effect of sex is substantial, you will want to know about it! For that reason, if the outcome 

of your study is as important for males as for females, you should try to have equal numbers of male and 

female subjects. Your confidence interval for the overall effect on females and males combined will be only 

a bit wider than if you had subjects of one sex, but of course the effect will be the average of the effect on 

(equal numbers of) females and males. The sex*trial*group interaction will tell you how different the males 

are from the females, although the confidence interval for the comparison of the effect on females and 

males will be about twice as wide as that for the overall effect. So, to properly delimit the difference 

between females and males, you will need four times as many subjects as for a single-sex study. That's the 

bad news. The good news is that you will end up with a wonderfully narrow confidence interval for the 

overall effect. 

Two or More Within-Subject Effects 

  

model: numeric <= (subject)  trial  condition  trial*condition 

example: jumphgt <= (athlete)  time  test  time*test 

http://www.sportsci.org/resource/stats/otherrems.html#extra_sex
http://www.sportsci.org/resource/stats/otherrems.html#two_or_more
http://www.sportsci.org/resource/stats/otherrems.html#two_or_more
http://www.sportsci.org/resource/stats/otherrems.html#within
http://www.sportsci.org/resource/stats/otherrems.html#covariates
http://www.sportsci.org/resource/stats/otherrems.html#trouble
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Imagine that the intervention is a program aimed at training athletes to use 

visualization before a jump (and thereby jump higher). At weekly intervals the 

athletes perform a jump with and without visualization. The figure shows a 

possible outcome, in which visualization starts to work after a couple of weeks 

of training: 

The model has the same form as in the previous example, but I've replaced 

group (representing separate measurements on different subjects) with 

condition (representing separate measurements on the same subjects). The interpretation of trial and 

condition in the model is the same as that for trial and group. Coaxing your stats program to deal with two 

or more within-subject effects will be a challenge! 

In the example, I've renamed trial and condition to time and test to make things a bit clearer. The 

interpretation of time is obvious. Test represents the test of jump height, and it has two levels: visualization 

and no visualization. The interaction effect time*test tells us about the difference between the two time 

courses, and contrasts between the different levels of time and test for this effect tell us when the effect of 

visualization differs from no visualization. A polynomial contrast would show a substantial difference in 

linear and quadratic components, indicating that jumping with visualization shows a more rapid 

improvement in jump height initially (the linear effect), but that the gap is closing by Week 4 (the quadratic 

effect). You'll have to think really hard about this one. 

An unsophisticated approach to these data would be to perform a series of paired t tests for each time 

point. For example, you might find that the difference between visualization and no visualization is 

significant at Weeks 2 and 3, but not at the other times. This approach does not take into account any 

difference between the tests at Week 0, so it's not valid. An acceptable fix is to subtract the jump height at 

Week 0 from that at each of the other weeks (for the two tests separately), then do a paired t test to 

compare visualization with no visualization at Weeks 1 through 4. 

Within-Subject Modeling 

This is a name I've devised for an approach that reduces or avoids the complexity of repeated-measures 

analyses. Basically, you derive a single measurement from the repeated measurements on each subject, 

then apply an appropriate simple analysis to the single measurement. The post-pre change score is the 

simplest example of a single measurement, and you would analyze the change scores with the unequal-

variances version of the unpaired t statistic. 

The approach works well for more complex derived measurements, too. For example, imagine you're 

looking at the effect of overtraining on recovery of heart rate following a standard bout of exercise. Let's say 

you record heart rate at half-minute intervals for three minutes. OK, that makes seven repeated 

measurements. Do you use repeated-measures ANOVA on these heart rates? Well, you could, I suppose. 

But what about if you want to fit an exponential decay curve on the heart rates, and extract the time 

constant. I defy anyone to deal with that within a repeated-measures model. It's only possible if you fit an 

exponential curve to each subject's data separately, extract a time constant for each subject, then use the 

time constant in your subsequent analyses. Hence the name within-subject modeling: you fit the same 

model to each subject and extract one or more parameters, which you then use for further analysis. r. 

In fitting the model to each subject, you don't have to worry about distributions of residuals. Subsequent 

modeling with the parameters does need to be done properly, though. That modeling could be cross-

sectional or longitudinal (repeated measures). For example, if the seven measurements of heart rate are 

taken on only one occasion for each subject, subsequent analysis of the parameter(s) describing the 

change in heart rate will be cross-sectional. But if the seven measurements are taken on several 

occasions, each subject provides several estimates of the parameter(s), so repeated-measures modeling 

will be necessary. 

A real advantage of within-subject modeling is that most research students can do it without complex 

statistical analyses. Another advantage is that the analyses require fewer assumptions about the repeated-

measures structure of the data, so the p values and confidence limits are more trustworthy. But mixed 

modeling, properly applied, is more powerful, especially when you want to include covariates in the 
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analysis. See the slideshow on repeated measures for more examples and explanations of within-subject 

modeling. 

Covariates in Repeated-Measures Analyses 

By adding terms called covariates to the usual (fixed-effects) model, you can analyze for the following: the 

extent to which a subject characteristic accounts for individual responses to a treatment, the effect of the 

treatment on trends in repeated sets of trials, and the extent to which the effect of the treatment was due 

to changes in a putative mechanism variable. All is explained in the slideshow on repeated measures that 

I referred to on the first page on repeated measures. Click here to download the slideshow, which is an 

updated and extended version of an earlier slideshow on covariates in repeated measures. 

Repeated-Measures Analysis of Troublesome Variables 

In earlier pages on non-repeated-measures models, I showed how to deal with dependent variables that 

don't produce uniform normally distributed residuals. The same approaches apply to repeated-measures 

models. Thus, you will often need to log-transform or rank-transform a variable before analyzing it. When 

you rank-transform, make sure you do it to all the observations in one shot, not to each repeated 

measurement separately. The data will need to be in the form of one row per trial (as for mixed modeling), 

not one row per subject (as for ANOVA), for you to do the rank transformation correctly within an Excel 

spreadsheet. 

An exact analysis of ordinal variables, such as those derived from Likert scales, requires repeated-

measures logistic regression, but the analyses are difficult for newbies and the outcome statistics (odds 

ratios) are hard to interpret. For most variables, including even those with only two levels (yes or no, injured 

or not...), you can code each level of the variable as consecutive integers (0 and 1; 1, 2, 3, 4, and 5; and so 

on) and analyze it as if it was a well-behaved continuous normally distributed variable. Sure, the residuals 

are anything but normal, but as before, you can count on the central limit theorem to make the sampling 

distribution of the effect statistic normal, so the confidence limits or p values will be trustworthy. If 

responses for one or more groups are severely stacked up at one end of the scale, you will need a large 

sample size (possibly >20) for the central limit theorem to do its thing. I can't say exactly how many, but I 

hope to do some simulations to get an idea. The unequal-variances t test came through with flying colors 

for modest sample sizes (10-20) in my simulations with non-repeated-measures ordinal variables, and it will 

probably do equally well when applied to change scores derived from ordinal variables. We can't assume 

that mixed modeling will perform as well, because its method of estimation is different from that in the t test. 

Simulation will reveal all. 

Nominal dependent variables can be analyzed by repeated-measures categorical modeling, if you want 

outcomes expressed as odds ratios. Otherwise treat each level of the nominal variable as a separate 

variable coded 0 or 1 (as I suggested under categorical modeling), then analyze each variable with 

conventional repeated-measures approaches. For example, you get schoolkids to tick one of four boxes 

representing the most important reason for playing sport. You collect the questionnaire, then show half of 

them a video aimed at convincing them that winning is (or isn't) everything. Finally you give them a fresh 

copy of the questionnaire to fill in. To what extent did the video change their attitude? You might even 

administer the questionnaire again a month later to see how the changes lasted. To do the analysis, treat 

each reason as a separate variable, code it 1 if the kid ticked it, or 0 if not, then use the unequal-variances t 

statistic to investigate differences in the changes between the group who saw the video and those who 

didn't. The magnitude of the outcome is the proportion of kids who changed their choice of the given 

reason. 

Variables representing proportions or counts require root or arcsine-root transformation before you give 

them the usual repeated-measures analysis. The more exact approach is to use binomial or Poisson 

regression. Proc Genmod in SAS does it for repeated measures. 

The next page deals specifically with the use of mixed modeling in the Statistical Analysis System. 

 

 

http://www.sportsci.org/resource/stats/repanova.html
http://www.sportsci.org/resource/stats/Analysis_of_repeated_measures.ppt
http://www.sportsci.org/resource/stats/Covariates_in_repeated_measures.ppt
http://www.sportsci.org/resource/stats/logtrans.html
http://www.sportsci.org/resource/stats/nonparms.html
http://www.sportsci.org/resource/stats/modelsdetail.html#normal
http://www.sportsci.org/resource/stats/categore.html
http://www.sportsci.org/resource/stats/procmixed.html
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 Proc Mixed for Repeated Measures 

 
On this page I introduce several examples of repeated-measures data, and I provide programs to analyze 

them using Proc Mixed in the Statistical Analysis System (SAS). Proc Mixed uses mixed modeling, a 

concept I have already introduced and which I will explain here in more detail soon. I will also explain 

covariance matrices. Meanwhile, here are some general remarks about the examples and the programs, 

followed by specific remarks for each example and links to the programs. 

It's more than five years since I wrote these pages and the SAS programs! My approach has become 

more sophisticated during that time, but I haven't had a chance to update things here yet. If you are running 

SAS and would like advice and/or copies of my recent programs, contact me. 

The data in each example are for athletes tested on several occasions to 

determine the distance they can throw an object, such as a javelin. (The figure 

shows the simplest example.) In each example, the program creates a sample of 

athletes drawn randomly from a population with a normal distribution of throwing 

ability. Next, the program generates normally-distributed within-subject random 

variation, which is simply the variation in performance that each subject 

experiences between tests. It then adds a change or changes in performance between some tests, for 

example changes resulting from a training program. Finally it uses Proc Mixed to analyze the data. 

If you re-run any of these programs, the random variation between and within subjects will produce a 

slightly different outcome, so the data may not look exactly like what's in the figure accompanying each 

example. It's the same as repeating the study with a different sample of subjects. Try it and see, then play 

with the sample size, the between- and within-subject variation, and the magnitude of the change or 

changes in performance. 

The main aim of the analysis is to calculate the changes in performance between tests, and the confidence 

limits or p values for the changes. Calculating the changes is usually easy: you just subtract the mean of 

one or more tests from the mean of one or more other tests. Calculating confidence intervals or p values is 

the hard part. That's when you need a procedure like Proc Mixed or analysis of variance. The procedure 

can also output the changes in performance, to save you doing it on a spreadsheet. 

Here are the examples: 

 Simple repeated measures 

 Adding a control group 

 Fitting polynomials 

 Individual differences, and covariates 

More to come soon! 

To analyze your own data, you will need to get help from someone who knows how to set up a link from the 

SAS program to the data file on your computer. That means adding a filename statement that links to a 

data step containing an infile statement. I might provide examples of that soon, too. 

 

Simple Repeated-Measures

 

The figure shows data for a single group of subjects who were tested four times. A treatment between test2 

and test3 (for example, supplementing for a week with a potentially ergogenic nutritional like creatine) 

seems to have produced an increase in the distance of the throw. 

http://www.sportsci.org/resource/stats/threetrials.html#mixed
http://www.sportsci.org/resource/stats/willhopkins.html
http://www.sportsci.org/resource/stats/procmixed.html#simple
http://www.sportsci.org/resource/stats/procmixed.html#control
http://www.sportsci.org/resource/stats/procmixed.html#poly
http://www.sportsci.org/resource/stats/procmixed.html#indiff
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As noted above, the aim of the analysis is to calculate the mean increase in the distance of the throw 

between the tests, and its confidence limits or p value. 

The data for each athlete show the kind of consistency of performance you expect when there are no 

problems with sphericity, as I discussed on the page devoted to three or more tests and no between-

subjects effect. In the accompanying program, the analysis with an unstructured covariance matrix serves 

as a check for such problems. If there aren't any (and I didn't deliberately generate any), you use a 

covariance matrix with compound symmetry, as shown in the program. It won't make much sense until I 

provide a full explanation. Soon. 

Adding a Control Group

 

The data are the same as above, but this time there is a control group who don't get any special treatment 

between test2 and test3. The treatment could be something like a week of supplementing with creatine (the 

drug group) or an inactive substance (the control group). 

 

Again, the aim of the analysis is to determine the confidence limits for the increase, but this time it's the 

increase in the drug group relative to (minus) the increase in the control group. Make sure you understand 

the concepts on the pages devoted to two trials plus a between-subjects effect and three or more trials plus 

a between-subjects effect before you try the SAS program. 

Fitting Polynomials

 

The figure shows data for two groups of athletes. After a baseline test at time=0, one group did overload 

training, while the other group continued with normal training. 

 

The aim of the analysis is to compare the enhancement in the overload group with that of the normal group 

at various times. You can also compare the linear and quadratic components of the trends between the 

groups. I'll add lots more on this topic soon. 

See the earlier section on polynomial contrasts before you try the SAS program. 

 

http://www.sportsci.org/resource/stats/threetrials.html
http://www.sportsci.org/resource/stats/threetrials.html
http://www.sportsci.org/resource/stats/mixed1w.html
http://www.sportsci.org/resource/stats/twotrials.html
http://www.sportsci.org/resource/stats/threetrialsplus.html
http://www.sportsci.org/resource/stats/threetrialsplus.html
http://www.sportsci.org/resource/stats/mixed1w1b.html
http://www.sportsci.org/resource/stats/threetrials.html#estimates
http://www.sportsci.org/resource/stats/mixedpoly.html
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Individual Differences, and Covariates

 

When different subjects have a different response to a treatment, we say that there are individual 

differences in the response. I first touched on this possibility when I dealt with repeated measures 

with three or more trials and no control group. Here I've limited it to three trials only, but I have included a 

control group (not shown in the figure). In this example, a treatment between test2 and test3 has produced 

an overall increase in distance of a throw, but individual athletes differ widely in their response to the 

treatment. 

 

The aim of the analysis is... 

 To estimate the overall effect of the treatment. That's usually the change in the mean between test2 

and test3. In the example, the distance of the throw is increased by 3 m following the treatment. 

 To estimate the variability in the change in the mean between test2 and test3. That represents the 

individual differences, and it's best expressed as a standard deviation. In the example, the standard 

deviation is 2 m. The increase in distance is therefore 3 ± 2 m, which means that typical 

enhancements for individual athletes (to the nearest meter) might be 2, 4, 3, 0, -1, 3, 6... 

o Researchers sometimes calculate the standard deviation for the difference between test3 

and test2. This standard deviation includes within-subject variation, so it is always larger 

than the true measure of individual differences. 

 To account for the individual differences with a subject characteristic, such as age or percent of type 

1 muscle fibers. In the example, the ± 2 m is attributed entirely to another variable, such that a 

change in that variable of one unit produces a change in the throw of 2 m. 

 To calculate the confidence limits for all of the above. For example, the confidence limits for the 3 m 

might be 1 to 5 m, and the confidence limits for the 2 m might be 0 to 5 m. 

The SAS program generates data for the treatment group, first without individual differences between test2 

and test3, then with them. It also generates the data for a control group who have no shifts in the mean and 

no individual differences between test2 and test3. The analysis includes test1-test2 comparisons too. 

This analysis is difficult, so I have included the output of the program and annotated it a little. Here's a 

summary of the output: 

When there are no individual differences in the treatment group, the change in performance between test2 

and test3 is 2.7 ± 0.3 units (mean ± SD); the 95% confidence limits for the mean are 1.6 and 3.8; the 95% 

confidence limits for the SD are -1.1 and 1.2. 

With individual differences present, the change in performance between test2 and test3 is 2.5 ± 2.0 units 

(mean ± SD); the 95% confidence limits for the mean are 0.9 and 4.1; those for the SD are 1.3 and 4.4. 

With individual differences present, and with a covariate that explains them included in the analysis, the 

change in performance between test2 and test3 is 2.7 ± 0.3 units (mean ± SD); the 95% confidence limits 

for the mean are 1.5 and 3.9; those for the SD are -1.1 and 1.2. The value of the covariate is 1.8 units of 

throwing performance per unit of covariate; its 95% confidence limits are 0.5 and 3.2. 

 

http://www.sportsci.org/resource/stats/threetrials.html
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 REGRESSION TO THE MEAN

 
Do a fitness test on a bunch of subjects.  Rank the subjects by their score and select the bottom half of the 

bunch.  Retest the bottom half.  The average score of the bottom half will probably improve somewhat on 

retest. Similarly, the average score of the top half will probably drop somewhat on retest.  These changes in 

performance are called regression to the mean. The name refers to a tendency for subjects who score 

below average on a test to do better next time, and for those who score above average to do worse. 

The group you select doesn't have to be the bottom or top half, and the test doesn't have to be the first 

one.  Any group or even any subject you choose with an average score below or above the mean of all the 

subjects in a given test will probably move (regress) noticeably closer to the mean in another test.  In 

general the scores don't move completely to the mean–they just get closer to it.  It is therefore more 

accurate to call the phenomenon regression towards the mean. 

OK, so low scorers tend to get better on retest, and high scorers tend to get worse?  Well, no, 

actually.  Depending on the nature of your data, the change in the scores towards the mean may be partly 

or even entirely a statistical artifact. If it's entirely an artifact, the true scores of the subjects don't really 

change on retest–it just looks that way.  When that happens in, for example, a training study, your analysis 

might lead you to conclude that the least fit subjects got a big benefit from the training, whereas the fittest 

subjects got a smaller benefit or may even have got worse.  In reality, all subjects may have increased in 

fitness by a similar amount, regardless of initial fitness.  Your conclusion about the effect of initial fitness 

could be artifactual garbage. 

Regression to the mean can lead to similar mistakes with repeated observation or testing of the health or 

performance of an individual. Consider a patient with a chronic health problem. Depending on the problem, 

symptoms can fluctuate in severity over a period of weeks or months, for no apparent reason. When the 

symptoms get really bad, the patient may try a new alternative therapy. The symptoms then improve, 

because they were bound to improve from their atypical severe level. The patient can be forgiven for 

thinking that the new therapy worked. Later on, the patient stops taking the new therapy, the symptoms get 

bad again, the patient takes the therapy again, the symptoms improve... Get the picture? You can imagine 

a similar scenario with an athlete who turns in a particularly bad performance, then does something about 

it. Whatever the athlete does, it's likely to work–artifactually. Now you can understand why there is so much 

snake oil on the shelves of drug stores. 

I'll now deal with the nature of artifact when you analyze data from a group of individuals. The subsections 

are: the cause of the artifact, the magnitude of the artifact, and how to avoid the artifact. 

 Cause of the Artifact

 
Regression to the mean occurs because of noise (error) in the test score.  Noise refers to the random 

fluctuations in a subject's score between tests–the typical or standard error of measurement. When you 

select subjects who scored low in one test, their scores were low partly because the noise just happened to 

make the scores low in that test.  In other words, their true scores aren't really as low as the scores you 

selected.  When you retest these low scorers, their scores in the retest will on average be their true scores 

(plus or minus the noise of the test, of course), so the scores are likley to rise.  For the same reason, high 

scorers selected by you in one test are likely to fall on retest.  Average scorers, on the other hand, are 

equally likely to rise or fall, so on average they don't change.  The overall pattern is therefore for scores 

different from the mean in one test to regress towards the mean in another test. 

The noise responsible for regression to the mean can come from two sources:  the measuring instrument 

(technical or technological noise) and the subjects themselves (within-subject variation from test to test).  I 

use the word instrument in its most generic sense: it could be a questionnaire, a device for measuring 

oxygen consumption, or whatever.   If the noise comes solely from the instrument, regression to the mean 

is unquestionably an artifact.  But if the noise is due to within-subject variation, there is a sense in which the 

regression to the mean is real. I'll explain with an example.  

http://www.sportsci.org/resource/stats/regmean.html#cause
http://www.sportsci.org/resource/stats/regmean.html#magnitude
http://www.sportsci.org/resource/stats/regmean.html#avoid
http://www.sportsci.org/resource/stats/precision.html#tem
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Suppose you administer two fitness tests several months apart.  Several months is long enough for many 

subjects to change their fitness substantially: some will be fitter, some less fit.  The "noise" in the test could 

be due almost entirely to these random but real within-subject changes in fitness.  So when you select a 

subgroup with low fitness scores in the first test, the increase in their fitness in the second test is a real 

increase.  If the increase is real, is there still a problem?  Yes, because you could easily attribute the 

increase in fitness to something you had done between the tests, such as a training or nutritional 

intervention.  The increase in fitness is real, but some of it was going to happen anyway, regardless of 

whatever you did. There are many papers in the literature in which the authors did not take account of 

regression to the mean when they claimed that their treatment produced a bigger increase in fitness on 

subjects with lower initial fitness. 

 Magnitude of the Artifact

 
There is a simple formula for estimating the magnitude of regression to the mean: on retest, scores will 

move towards the mean by a fraction given by 1 – r, where r is the reliability correlation between test and 

retest scores.  So, if r = 0.9, and you select a group of subjects whose average score is, say, 20 units 

above the mean, you can expect the average scores of those subjects to drop on retest by an average of 

(1 – 0.9)x20, or 2 units.  Obviously, the smaller the r, the bigger the fractional move towards the mean.  In 

the extreme case of r = 0, scores on retest regress on average all the way back to the mean.  The 1 – r 

formula comes from the page Regression to the Mean at Bill Trochim's stats site. There is no proof or 

reference for the formula at his site, but it checks out with my simulations. 

The retest correlation is involved in regression to the mean, because the correlation is a measure of the 

magnitude of the noise in the measurement.  The formula for r is (SD2 – sd2)/SD2, where sd is the within-

subject standard deviation (the typical or standard error of measurement, or the noise) and SD is the usual 

between-subject standard deviation in either test.  Rearranging, 1 – r = the fractional shift towards the mean 

= sd2/SD2.  If sd is small relative to SD, there is little regression to the mean.  At the other extreme, when 

SD = sd, subjects are effectively identical (the only difference between subjects is noise), so all pre-

selected scores that differ from the mean will, on average, regress completely to the mean on retest. 

The above formulae will allow you to estimate how much of a change in the mean is artifactual, but you 

should also be concerned about precision of the estimate, that is, the confidence limits for the true 

value.  Bill Trochim does not have a formula for the confidence limits for the adjusted change in the mean. 

In the next section I will explain how to use the formula and get confidence limits. 

 How to Avoid the Artifact

 
Regression to the mean is a problem only when there is substantial noise in your dependent variable and 

you subdivide your subjects into groups that differ in their mean scores in one of the tests.  Using the best 

test available is one way to reduce the effect of noise, but that won't reduce noise represented by real 

random changes in the subjects over the period between the tests. Of course, you can avoid the problem 

by not subdividing your subjects on the basis of their initial scores, but it is nice to know how a subject's 

initial score affects the outcome of a treatment. For example, you should find out if people with high initial 

scores get little benefit, because it's a waste of time using the treatment on such people.  There are two 

approaches:  correct the change scores using a formula, or use a control group. I once had an additional 

approach on this page, based on using the mean of each subject's pre- and post-test scores to subdivide 

the subjects. This approach eliminates regression to the mean, but it works properly only when the effect of 

the subject's pre-test score on the effect of the treatment is small (relative to the between-subject standard 

deviation in the pre-test). In general, you won't know how big the effect of the pre-test score is, so I have 

had to shelve this approach for the time being. 

Correct the Change Scores 

To use this approach, you will need to know either the retest correlation coefficient (r) or the within-subject 

variation (standard deviation, sd) for the dependent variable. Both must come from a reliability study with 

subjects and time between tests similar to those in your study. In my experience, an appropriate reliability 

http://www.sportsci.org/resource/stats/precision.html#relycorr
http://trochim.human.cornell.edu/kb/regrmean.htm
http://www.sportsci.org/resource/stats/generalize.html#viacl
http://www.sportsci.org/resource/stats/precision.html
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study is often not available in the literature, so you will have to guestimate the reliability from less applicable 

reliability studies. Guestimate an sd rather than an r, because r is sensitive to the between-subject standard 

deviation of the subjects in the reliability study. 

Armed with the reliability sd or r, proceed as follows. Subtract the pre-test mean of all subjects from each 

subject's pre-test score.   Multiply that difference either by sd2/SD2 or by (1 - r), where SD is the usual 

between-subject standard deviation of your subjects in the pre-test. Now add the result (or subtract it when 

it is negative) to the post-pre change score for that subject. This corrected change score is free of the 

artifact. Use it in your analyses just as you would any change score. For example, do an unpaired t test to 

compare subjects with low vs high pre-test scores. Better still, plot the corrected change scores on the Y 

axis against the pre-test scores on the X axis. If the points form something like a line, derive the slope of 

the line as an estimate of the effect of pre-test score on the effect of the treatment. 

Be aware that the confidence interval (or p value) for any effects involving the adjusted change score will 

be too small if the reliability study had a small sample size, owing to uncertainty in the estimate of sd or r. 

The effects, such as the difference between high and low scorers or the slope of the line in the examples 

above, will also be biased if the r or sd from the reliability study are substantially different from what your 

subjects would show in a reliability study with the same time between tests as in your study. 

Use a Control Group 

Using a control group is a better approach than correcting the change score. Actually, the approaches are 

fundamentally the same, because the control group is effectively the most appropriate reliability study for 

correcting the change scores. But don't use the control group to correct each subject's change score. 

Instead, analyze the effect of the pre-test score on the change score in both groups in the same manner, 

then compare the effect in the treatment group with that in the control group. The analysis will require a 

two-way analysis of variance (ANOVA) or covariance (ANCOVA). For example, suppose Ychng is the 

dependent variable representing each subject's post-pre change score, suppose Group has 

levels control and intervention, and suppose Prescore represents the pre-test score. The model is: 

      Ychng <= Group Prescore Group*Prescore. 

If Prescore has the numeric values of the pre-test score, the model represents an ANCOVA. If instead you 

have coded the pre-test scores into two levels, such as low and high, the model is a 2-way ANOVA. Not 

that it matters what you call it--either way, you are interested only in the interaction term Group*Prescore, 

which yields the difference between the groups in the effect of the pre-test score on the change score (that 

is, on the effect of the treatment). 

Watch out for non-uniform error! The standard deviation of the change scores in the treatment group may 

be larger than that in the control group, and there may be differences in the standard deviation for different 

values of Prescore, when there is a substantial true effect of pre-test score on the change score. The only 

way to take such non-uniform error into account properly is to use mixed modeling to specify different error 

terms for the different groups. Sorry, that's the way it is, guys. It's time you upskilled to the mixed model. 
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Generalizing to a Population: 

ESTIMATING SAMPLE SIZE

 

Update Oct 2007: The following pages are now largely superseded by an extensive article on sample-size 

estimation published in Sportscience in 2006 with an accompanying slideshow and spreadsheet. I suggest 

you read the article first. There are a few formulae on the following pages that are not in the article. 

I get more requests for information about sample sizes than about any other aspect of stats. I've come up 

with approaches and formulae that you won't find anywhere else, and that's not because they're wrong, 

either! 

First, I'll deal with the need for the right number of subjects in a study: the main considerations are 

publishability of your findings, and the ethics of wasting resources. Then I spend a page on a new look at 

the traditional approach to what determines sample size, which leads to the formulae. I then present a new 

approach, sample-size estimation based on confidence intervals, with the good news that you need half the 

usual number of subjects. You'll almost certainly get away with an even smaller sample, if you use sample 

size "on the fly". Finally I encourage you to use simulation to work out sample size for complex designs or 

unusual outcome statistics. 

 THE RIGHT NUMBER OF SUBJECTS

 

With too few subjects, the confidence interval on your outcome is too wide to allow any useful conclusion. 

For example, you could get a big positive effect, but that's not very exciting or publishable if the wide 

confidence interval shows that the effect could actually be negative--in other words, if it's not statistically 

significant. Even if you observe a trivial effect, a small sample means a wide confidence interval, so the 

effect could still be large and positive or large and negative. Such results are hard for journals to accept. 

With the right number of subjects, you have a narrow confidence interval on your outcome. It's sufficiently 

narrow that any worthwhile effects are statistically significant, which means you won't have missed 

anything. And even statistically non-significant results are publishable, because you can say that the effect 

is trivial. In my view, being able to say that an effect is too small to worry about is just as important as 

saying that it is large. 

Too many subjects gives you a nice narrow confidence interval, but it's more narrow than you need. For 

example, it would be silly to have so many subjects that you could say a correlation lies between 0.725 and 

0.729. That's far too much precision. Most of the time you'd be happy to say that it's 0.7, but not 0.8 or 0.6. 

The ethical committees that grant approval for research projects are becoming more aware of the need to 

have the right number of subjects in a study. They require you to document your estimation of the required 

sample size, and they will not grant approval for research projects with too few or too many subjects. Small 

samples are unethical, because you can't be specific enough about the size of the effect in the population. 

Large samples are also unethical, because they represent a waste of resources. 

You can sometimes justify a suboptimal sample size by arguing it's for a pilot study to determine reliability 

or validity, which in turn will allow you to estimate the sample size for a larger-scale study. A suboptimal 

sample size is also the starting point for sample size on the fly. But let's continue with the traditional 

approach and some formulae on the next page. 
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 WHAT DETERMINES SAMPLE SIZE? 

 
The traditional approach to estimation of sample size is based on statistical significance of your outcome 

measure. You have to specify the smallest effect you want to detect, the Type I and Type II error rates, 

and the design of the study. I present here new formulae for the resulting estimates of sample size. I also 

include new ways to adjust for validity and reliability, and I finish with sample sizes required for several 

complex cross-sectional designs. 

I also advocate a new approach to sample-size estimation based on width of the confidence interval of your 

outcome measure. In this new approach, your concern is with the precision of your estimate of the effect, 

not with the statistical significance of the effect. The formulae on these pages still apply, but you halve the 

sample sizes. 

 

 The Smallest Effect Worth Detecting

 
I've already spent a whole page on magnitudes of effects. You should go back and make sure you 

understand it before proceeding. Or take a risk and read on! 

Let's look at a simple example of the smallest effect worth detecting. Your research project includes the 

question of differences in height of adults in two regions. This sounds like a trivial project, but hey, the 

difference might be caused by a nutritional deficit, environmental toxin, level of physical activity, or 

whatever. OK, what difference in height would you consider to be the smallest difference worth noticing or 

commenting on? Almost everyone reading this paragraph will automatically start thinking either in inches or 

centimeters. So what's your choice? An inch, or 2.5 cm? Sounds like a nice round figure! Let's go with it for 

now. 

To use my approach to sample-size estimation, you convert this difference into a value for the effect-size 

statistic. To do that, you divide it by the standard deviation, expressed in the same units. The standard 

deviation here is just the usual measure of spread, except that we have two groups. So let's assume we 

have an average of the standard deviation in both groups. Let's say it is 2 inches, or 5 cm. So, if you want 

to detect 2.5 cm, and the standard deviation is 5.0 cm, the smallest effect worth detecting is 2.5/5.0, or 0.5. 

I'll talk about what I mean by detecting in a minute. First, more about the smallest effect. You'll discover 

shortly that the required number of subjects is quite sensitive to the magnitude of the smallest worthwhile 

effect. In fact, halving the magnitude quadruples the number of subjects required to detect it. So the way 

you decide on the smallest effect is important. How did we arrive at that minimum difference of 2.5 cm? In 

my experience, most researchers dream up a number that sounds plausible, just like we did here. Well, 

sorry, but you just can't do it like that. In fact, you don't have the freedom to choose the minimum effect. In 

all but a few special cases, it's the threshold for small effects on the scale of magnitudes: 0.2 for the Cohen 

effect-size statistic, 10% for a frequency difference, and 0.1 for a correlation. You need the same sample 

size to detect each of these effects, and as we'll see, it's 800 subjects for a simple cross-sectional study in 

the old-fashioned way of doing the figuring. It's even more than 800 when you factor in the validity of your 

variables. But don't panic. We'll also see that there are ways of reducing this number, sometimes 

drastically. 

  

 Type I and II Error Rates

 
Now, what do I mean by detecting? Simply that if the real difference between the two groups in the 

population is 2.5 cm (an effect size of 0.5), you want to be sure that it will turn up as statistically 

significant in the sample that you draw for your study. If it doesn't turn up as statistically significant, you 

have failed to detect something that you were interested in. Make sense? So our definition of statistical 

http://www.sportsci.org/resource/stats/effectmag.html
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significance, and our idea of what it means to be sure that it will turn up, both impact on the required 

sample size. 

First, statistical significance. The difference is statistically significant, by definition, if the 95% confidence 

interval does not overlap zero, or if the p value for the effect is less than 0.05. Values of 95% or 0.05 are 

also equivalent to a Type I error rate of 5%: in other words, the rate of false alarms in the absence of any 

population effect will be 5%. We don't have any choice here. It has to be 5%, or less preferably, but most 

researchers opt for 5%. If you want a lower rate of false alarms, say 1%, you will need more subjects. 

Now, what about being sure that the effect will turn up? In other words, if the effect really is 2.5 cm in the 

populations, how sure do we want to be that the difference observed in our sample will be statistically 

significant? We don't have any choice here, either. We have to be at least 80% sure of detecting the 

smallest effect. To put it another way, the power of the study to detect the smallest effect has to be at 

least 80%. Or to put it yet one more way, the Type II error rate--the rate of failed alarms for the smallest 

effect--is set at 20% or less. That's one chance in five of missing the thing you're looking for!?! Sounds a bit 

high, but keep in mind that it is the rate for the smallest worthwhile effect. The chance of missing larger 

effects is smaller. Once again, if you want to make the error rate lower, say 10%, you will need more 

subjects. 

 

 Research Design

 
We're stuck with having to detect 0.2 for the effect-size statistic, 10% for a frequency difference, or 0.1 for a 

correlation. And we're stuck with false and failed alarms of 5% and 20%. All that's left now is how we're 

going to go about it: the research design. When it comes to sample sizes, there are only two sorts of 

research design: cross-sectional and longitudinal. 

Cross-sectional designs include correlational, case-control, and any other design with single observations 

for each subject. Some so-called prospective designs, where subjects are followed up over time, are cross-

sectional if there is only one value for each variable for each subject. Cross-sectional studies need heaps of 

subjects, and the number is affected by the validity of the variables. 

Longitudinal designs include time series, experiments, controlled trials, crossovers, and anything else 

where the dependent variable is measured twice or more. The data have to be subjected to repeated-

measures analysis. The usual thing with these designs is a measurement before and after you do 

something, to see if what you do has any effect. Whether or not you have a control group, it is always the 

case that subjects "act as their own controls", because there are always pre and post measurements on the 

subjects. Longitudinal designs generally need far fewer subjects than cross-sectional designs, depending 

on the reliability of dependent variable. 

  

Sample Size for Cross-Sectional Studies 

  

For variables with perfect validity, you can now look up tables or run special software to see how many 

subjects you need. (G*power is a great little free program for the purpose.) Or use the following simple 

formula I have worked out: 

For Type I and II errors of 5% and 20%, the total number of subjects N is given by: 

N = 32/ES2, where ES is the smallest effect size worth detecting. 

Example: for ES = 0.2, the total N is 800, which means 400 in each group for a case-control study or a 

study comparing males and females. So for our study of differences in height, we'd need 400 in each 

group. 

What about if the outcome is a difference in the frequency of something in the two groups, for example the 

frequency of clinical obesity. The minimum worthwhile difference is 10% (e.g. 25% in one group and 35% in 

http://www.sportsci.org/resource/stats/errors.html
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the other). You just think about that difference as being equivalent to an effect size of 0.2, and plug it into 

the formula: 400 in each group again. 

And finally what about sample size to detect a correlation, for example the correlation between physical 

activity and body fat? Same story: 800 subjects to detect the minimum worthwhile correlation of 0.1, 

because a correlation of 0.1 is equivalent to an effect size of 0.2. For larger correlations use the scale of 

magnitudes to convert the correlation to an equivalent effect size, then plug it into the formula. 

  

For the rare cases where you have the luxury of Type I and II errors of 1% and 10% respectively, the 

number is nearly double: N = 60/ES2. 

Validity of the variables can have a major impact on sample size in cross-sectional studies. The lower the 

validity, the more the "noise in the signal", so the more subjects you need to detect the signal. If the validity 

correlation of the dependent variable is v (Pearson, intraclass, or kappa), the number of subjects increases 

to N/v2. 

To detect a correlation between variables with validities v and w, the number is N/(v2w2). Sample sizes may 

therefore have to be doubled or quadrupled when effects are represented by psychometric or other 

variables that have modest (~0.7) validity. 

  

Sample Size for Longitudinal Studies  

  

In our first example on this page, we had a cross-sectional design in which we were interested in the 

difference in height between people in two regions. Now, in a longitudinal design, we might want to know 

whether a stretching exercise makes people taller. Can you see that the same concept of minimum effect 

size still holds here? If we thought one inch was the smallest difference worth detecting between groups, 

then it has to be the smallest difference we would like to see as a result of our stretching exercise. (It might 

need a medieval rack to make people a whole inch taller!) 

Once again we don't have a choice about that minimum effect: it's still an effect size of 0.2 standard 

deviations, and the standard deviation is still the usual standard deviation of the subjects. At the moment 

we have only one group of subjects, and the standard deviation before we put people on the rack is usually 

about the same as after the rack. So you can think about the minimum effect size as a fraction of either 

standard deviation. But note well: do not use the standard deviation of the before-after difference score. 

Reliability of the dependent variable is the final piece of the jigsaw. The higher the reliability, the more 

reproducible are the values for each subject when you retest them, which makes it more likely you will 

detect a change in their values. So the higher the reliability, the less subjects you need to detect the 

minimum effect. Read the earlier section on sample size for an experiment for an overview of the role of 

typical error in sample-size estimation, and for an important detail about the conditions in a reliability study 

aimed at estimating sample size. 

The rest of this section contains details of formulae that you may not need to worry about. You can use two 

forms of reliability in the formulae: retest correlation and within-subject variation. 

Using the Retest Correlation 

  

First, a couple of cautions. The retest correlation is for retests with the same time between the tests as you 

intend to have in your experiment. For example, if you are doing an intervention that lasts 2 months, you 

need a 2-month retest correlation. Don't use a 1-day retest correlation unless you have good grounds for 

believing that it will be the same as a 2-month retest correlation. Also, the spread between the subjects in 

your study has to be similar to the spread between the subjects in the reliability study. If the spread is 

different, the value of the retest correlation coefficient will be inappropriate. In that case you will need to 

calculate the appropriate value by combining the within (s) and between (S) standard deviations for your 

subjects using this formula: 

   retest correlation r = (S2-s2)/S2. 

http://www.sportsci.org/resource/stats/effectmag.html
http://www.sportsci.org/resource/stats/effectmag.html
http://www.sportsci.org/resource/stats/valid.html
http://www.sportsci.org/resource/stats/precision.html
http://www.sportsci.org/resource/stats/relyappl.html#samplesize
http://www.sportsci.org/resource/stats/precision.html#relycorr
http://www.sportsci.org/resource/stats/precision.html#relycv
http://www.sportsci.org/resource/stats/relycalc.html#icc


109 
 

Right, here's the strategy for working out the required sample size when you know the retest correlation: 

 Work out the sample size of an equivalent cross-sectional study, N, as shown above. It's 800 in the 

traditional approach using statistical significance, or 400 using my new approach of adequate 

precision of estimation for trivial effects. 

 Determine the reliability r of the outcome measure by consulting the literature or doing a separate 

study. 

 For a simple design consisting of a single pre and post measurement on each subject, and no 

control group, the number of subjects is: 

    n = (1 - r)N/2 

This formula applies also to simple crossover designs, in which subjects receive an experimental 

treatment and a control treatment. (One half get the experimental treatment first; the other half get 

the control treatment first.) 

 If there is a control group, the total number of subjects required is: 

    n = 2(1 - r)N 

Yes, you need four times the number of subjects when there is a control group, not twice the 

number. Hard to accept, I know. 

 To take into account the validity of the outcome measure, multiply the above formulae by 1/v2, 

where v is the concurrent validity correlation (the correlation between the observed value and the 

true value of the variable). The simplest estimate of the concurrent validity is the square root of 

the concurrent reliability correlation for the outcome measure, so you simply divide the above 

formulae by the concurrent reliability correlation. In general, the concurrent reliability will be greater 

than the retest reliability 

Using the Within-Subject Variation 

  

You can also think about the difference between the post and pre means in terms of the within-subject 

variation (standard deviation). For example, if the performance of an individual athlete varies by 1% (the 

within-subject standard deviation expressed as a coefficient of variation), how many athletes should you 

test to detect a 1% change in performance, or a 2% change, or a 0.5% change? Here is the formula: 

 To detect a fraction (f) of a within-subject standard deviation with 5% false alarms and 20% failed 

alarms: 

    n = 64/f2 with a full control group 

    n = 16/f2 for crossovers or experiments without a control group. 

 Another way to represent the same formulae is to replace f with d/s, where d is the smallest 

worthwhile post-pre difference you want to detect, and s is the within-subject standard deviation: 

    n = 64s2/d2 with a full control group 

    n = 16s2/d2 for crossovers or experiments without a control group. 

 Remember to halve these numbers when you justify sample size using the new approach based 

on acceptable precision of the outcome. 

Example: You want to detect (p=0.05, 80% power) a 2% change in performance when the coefficient of 

variation is 2%. The corresponding value of f is 1.0, which means you'd need to test 16 athletes in a 

crossover design, or 32 in each of a control and experimental group. Or it's 8 or 16+16, if you justify sample 

size using precision of estimation. 

What's the smallest value of f worth detecting? Is it 1.0? Not an easy question! To answer it, you usually 

have to bring in the between-subject variation one way or another. Why? Because you can't get away from 

the fact that the magnitude of a change in the value of a variable usually has to be thought about in terms 

of the variation in the values of that variable between subjects. That's what minimum worthwhile effect sizes 

are all about. For example, if the between-subject variation is 5%, the smallest difference worth detecting is 

http://www.sportsci.org/resource/stats/ssdetermine.html#cross
http://www.sportsci.org/resource/stats/sscl.html
http://www.sportsci.org/resource/stats/twotrials.html#crossover
http://www.sportsci.org/resource/stats/valid.html
http://www.sportsci.org/resource/stats/valid.html#rely
http://www.sportsci.org/resource/stats/sscl.html
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0.2*5% or 1%. So, if your within-subject variation of 2%, you have to chase an f of 0.5. But if the between-

subject variation is 10%, the smallest worthwhile effect is 0.2*10% or 2%, so you chase an f of 1.0. 

Once you bring the between-subject variation back into the picture, you have all the ingredients for 

expressing the reliability as a retest correlation, so you can use the formulae with the retest correlation. For 

example, a within of 2% and a between of 5% implies a retest correlation of (52-22)/52 or (25-4)/25 or 0.84. 

A within of 2% and a between of 10% implies a correlation of (100-4)/100, or 0.96. Use these correlations in 

the formulae for sample size and you'll get the same answers as in the formulae using f. But if you have a 

reasonable notion of the smallest worthwhile change in a variable without explicitly knowing the between-

subject standard deviation or the correlation, use the formula with d and s (or f). 

There is certainly one situation where it's better to use the within-subject variation: estimation of sample 

size in studies of athletic performance. When athletes are subjects and competitive performance is the 

outcome, the smallest worthwhile effect is an enhancement that increases the medal prospects of 

a top athlete, not the average athlete. For sports like track and field, this minimum effect is about 0.5 of the 

typical variation in a top athlete's performance between events. For example, if the typical variation 

between events is 1.0%, then you're interested in enhancements of about 0.5%. So if you use a lab test 

with the same typical error as the competitive event, f in the above formulae is simply 0.5, so you would 

need 64/0.52, or 256 subjects for a fully controlled study. That's bad enough, but if your lab test has a 

typical variation of 2.0%, f is 0.5/2.0, which means 1024 subjects! Oh no! Clearly you need very reliable lab 

tests if you want to detect the smallest effects that matter to top athletes. See this Sportscience article for 

more information: 

 

Hopkins WG, Hawley JA, Burke LM (1999). Researching worthwhile performance enhancements. 

Sportscience 3, sportsci.org/jour/9901/wghnews.html  

  

Sample Size for Complex Cross-Sectional Studies 

  

I'll deal with two groups of unequal size, more than two groups, and more than one independent variable. 

Anything else requires simulation. 

Two Groups of Unequal Size 

  

Up to this point I have assumed equal numbers in each group, because that gives the most power to detect 

a difference between the groups. But sometimes unequal numbers are justified. 

The simplest case is where you have far more in one group than another. For example, you already have 

the heights for thousands of control subjects from all over the country, and you want to compare these with 

the heights of people from a particular region you are interested in. So, how many subjects do you need in 

that particular group? And the answer is... as few as one-quarter the usual number! But you will need to 

test, or have the data for, an "infinite" number of subjects in the other group for the number to be that low. 

How big is infinite? For the purposes of statistical power, about 5 times as many as in the special-interest 

group is close enough. 

I have a formula, but to understand how to apply it will need a lot of thought. If you have samples of size 

n1 and n 2, then your study will have the power equivalent to a study with a sample size of N equally divided 

between two groups, where: 

N = 4 n1 n2/( n1 + n2) 

For example, if you have data for 1000 controls (= n1), and 800 (= N) is the number you would normally 

require for equal-sized groups, then the above formula shows that you need to test only 250 cases (= n2). If 

you make n1 very large, the formula simplifies to N = 4 n2, or n2 = N/4, which is one-quarter the usual total 

number. 

  

http://www.sportsci.org/jour/9901/wghnews.html
http://www.sportsci.org/resource/stats/sssim.html
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More Than Two Groups 

  

Suppose we wanted to compare the heights of people in more than two regions. What should we do about 

the sample size? Do we need more than 400 in each region, less than 400, or just 400? And the answer 

is... it depends on what estimates or contrasts you want to perform. 

If you are interested in comparing one particular region with another particular region, you will still need 400 

in each of those regions to keep the same power to detect a difference. The fact that you have all those 

other regions in the analysis matters not a jot, I'm afraid. They don't increase the power of the design 

unless the number in each region is about 10 or less, which it never should be! 

If you are interested in comparing one particular region with the mean of every other, you've got the usual 

two-group design, but with 400 subjects in the region of interest and 400 divided up equally into the other 

regions. 

If you want to do every possible comparison between pairs of regions, or between pairs of groups of 

regions, things start to get complicated. As far as I can see, with six regions, say, only five completely 

independent comparisons are possible. So if you are concerned aboutinflation of the Type I error, you will 

need to apply Bonferroni's correction by reducing the p value to 0.05/5, or 0.01. Alas, a smaller p value 

means a bigger sample size. It's difficult to work out exactly what it should go up to, because somehow or 

other the inflated Type II error should also be taken into account. Certainly, nearly doubling the group size 

from the usual 400 would be a good start in this example, because as we've already seen on this page, that 

would be equivalent to a p value of 0.01 and a Type II error of 10%, instead of the usual 0.05 and 20%. 

  

More Than One Independent Variable 

  

Suppose you intend to measure half a dozen things like age, sex, body fat, whatever, and you want to 

know the effect of each of them on severity of injury in a particular sport. How many subjects do you need? 

Before we get clever with complex models for this question, let's take in the big view. If we treat each 

variable as a separate issue, it should be obvious that there will be a problem with inflation of the Type I 

error: none of the variables you've measured might predict severity of injury in the population, but if you 

have enough variables, there's a good chance one will predict injury in your sample. So you'll need to 

reduce your p value using Bonferroni's 0.05/n, where n is the number of independent variables. This 

correction will be too severe if the independent variables are correlated, but I don't know how to adjust for 

that. 

When you analyze the data, you should look at the effect of the independent variables separately to start 

with, but you will also end up using multiple linear regression, analysis of covariance, or some 

other complex model, with all the independent variables on the right-hand side of the model. As I explained 

on the first page devoted to complex models, you are now asking a question about how much each variable 

contributes to the severity of injury in the presence of (when you control for) the others. How many subjects 

do you need to answer this question? Theoretically the extra independent variables shouldn't make much 

difference, but I've checked by simulation to make sure. You need one extra subject for each extra 

independent variable. With five extra variables, that makes five extra subjects. Forget it. With a thousand or 

so subjects, five won't make any difference. 

Here's a different problem involving more than one independent variable, where you don't have to worry 

about increasing the sample size to reduce the Type I error. Suppose you are currently predicting 

competitive performance from four lab and field tests, and you want to know whether it's worth adding an 

expensive fifth test to the test battery. For this sort of problem, you would model the data by doing 

a multiple linear regression, with the expensive test as the last independent variable in the model. So, how 

many subjects? It's a specific extra variable in this case, so there is no inflation of the Type I error, so the 

sample size is still about 800. But if all the field tests were in there on an equal footing, and you wanted to 

know which ones to drop out of the test battery, then it's back to the bigger sample size of the previous 

http://www.sportsci.org/resource/stats/ttest.html#contrasts
http://www.sportsci.org/resource/stats/errors.html#inflation
http://www.sportsci.org/resource/stats/errors.html#inflation
http://www.sportsci.org/resource/stats/errors.html#typeII
http://www.sportsci.org/resource/stats/ssdetermine.html#double
http://www.sportsci.org/resource/stats/errors.html#inflation
http://www.sportsci.org/resource/stats/errors.html#inflation
http://www.sportsci.org/resource/stats/errors.html#inflation
http://www.sportsci.org/resource/stats/complex.html
http://www.sportsci.org/resource/stats/complex.html#controling
http://www.sportsci.org/resource/stats/multiple.html
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example. In this case you'd use stepwise regression with a reduced p value for entry of variables into the 

model. 

  SAMPLE SIZE BASED ON CONFIDENCE LIMITS

 
The traditional approach to sample size estimation requires the smallest worthwhile effects to be 

statistically significant. In other words, the approach is based on the relationship between the confidence 

interval and the null value of the outcome statistic. Why such a key role for the exact null value in the 

scheme of things? I believe it should be de-emphasized. If an effect is trivial, it doesn't matter whether it is 

zero, slightly positive, or slightly negative. And anyway, no real effects in nature are truly null. 

So, I think it is more logical to use a sample size that ensures the true value of the outcome could not be 

substantially positive and substantially negative. In other words, the confidence interval for the outcome 

statistic should not overlap into values that are substantially positive and substantial negative. If 

it does overlap positive and negative values, you have to conclude that the true value could be positive or 

negative. To avoid this unsatisfactory conclusion, you need a small-enough confidence interval, which 

means a big-enough sample size. 

You need the biggest sample size in this new approach when the observed 

value of the outcome statistic is zero or null. (You'll see why, eventually.) The 

figure shows an example for an observed correlation coefficient of zero and for 

±0.10 as the smallest worthwhile effects. With a sample size of 400, the 

confidence interval for an observed correlation of 0.00 is -0.098 to +0.098, or 

just within ±0.10. A sample of 380 gives an exact fit to ±0.10. Thus with 95% 

confidence, a population correlation coefficient cannot be substantially positive and negative if the sample 

size is 380, which is half the value you're supposed to use with the traditional approach to sample-size 

estimation. The same argument and sample size apply to a descriptive study when the outcome is the 

difference between the mean of two groups or the relative frequency of something in two groups. The 

formulae on the previous page are still applicable, including those for longitudinal designs (experiments or 

interventions), but in all cases the sample sizes are halved. When the effects are large, you need even 

smaller samples. On the next page I show you how to get these sample sizes "on the fly". 

The fact that the sample sizes using this new approach are half those of the old approach worries some 

statisticians. They say "your sample sizes give power of 50% rather than 80% for detecting the smallest 

effect". That's true, I admit, but we shouldn't be concerned with statistical significance any more. If you 

accept my rationale for basing sample size on precision of estimation, then you need half the sample size 

that you used to use. Or, to put it another way, people have been using samples that are twice as big as 

they needed. Sure, in one sense bigger samples are always better, because they give you more precision 

for the outcome. But too much precision represents an unethical waste of resources, so we've been getting 

an unethical amount of precision with our old sample sizes. Actually, the argument is more complex, 

because you really need several studies and even a meta-analysis to confirm a finding beyond reasonable 

doubt. No problem. 

Here's another example, this time for an experiment. The figure shows an 

observed outcome of zero change and the more general case of the smallest 

worthwhile pre to post difference or change of ±d. If this is a crossover or a 

simple experiment without a control group, the confidence limits are ± root(2) x 

s/root(n) x t0.975, df, where s is the within-subject standard deviation or typical 

error, n is the sample size, and t is the value of the t statistic for cumulative 

probability of 0.975 and df degrees of freedom (= n-1). Rearranging, n = 2t2s2/d2. The value of t is 

approximately 2, so n is about 8s2/d2. When n is small, t is a bit bigger than 2.0; for example, if d=s, the 

sample size is about 10 rather than 8. With a control group, the sample size is 4x as big. 
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  SAMPLE SIZE "ON THE FLY"

 

CAUTION: Most of the material in this section is original and has not been subjected to formal peer review. 

In the traditional approach to research design, you use a sample big enough to detect the smallest 

worthwhile effect. But hang on. You'll have wasted resources if the effect turns out to be large, because you 

need a smaller sample for a larger effect. For example, here is the confidence interval for a correlation of 

0.1 with a sample of 800, which is what you're traditionally supposed to use to detect such correlations. 

Look what happens if the correlation turns out to be 0.8: 

 
Far too much precision for a large correlation! So wouldn't it be better to use a smaller sample size to start 

with, see what you get, then decide if you need more? You bet! I call it sample size on the fly, because you 

start without knowing how many subjects you will end up with. The official name is group-sequential 

design, because you sample a group of subjects, then another group, then another group... 

in sequence, until you decide you've done enough. 

I'll start this page with a potential drawback of group-sequential designs, bias. Then I'll describe a new 

method based on confidence intervals that is virtually free of bias. I'll detail the method on separate pages 

for correlations, differences between means, and differences between frequencies. On the last page I show 

how to use it for any design and outcome, I suggest what to say when you seek ethical approval to use this 

new method, and I give justification for a strong warning: Do NOT use statistical significance to reach a 

final sample size on the fly. I finish that page with a link for license holders to download 

a spreadsheet that will make calculations easier and more accurate. 

  

 Big Bias Bad

 

How come this method isn't in all the stats books? How come every ethical committee doesn't insist on it? 

Surely the less testing, the more ethical the method? Yes, but statisticians are wary of group-sequential 

designs, because the final value of the outcome statistic is biased. For example, if you are finding out how 

well two variables are correlated, and you adopt a group-sequential approach, the value of the correlation 

you end up with after two or three rounds of sampling will tend to be higher than it really is in the 

population. That's what bias means: samples on average yield a value for a statistic different from the 

population value. In this case the bias is high. 

Where does this bias come from in a group sequential design? It's easy to see. You stop if you get a big 

effect, but you keep going if you get a small effect. You do the same thing again at Round #2, and Round 

#3, and so on: stop on a big effect, keep going on a small effect. Well, it's inevitable you'll end up with 

something higher than it ought to be, on average. But how high? That depends on how you start sampling 

and how you decide to stop. I have done simulations to show that the bias is substantial if you use 

statistical significance as your stopping rule, even for quite large initial sample sizes (see later). But the bias 

is trivial for the method I have devised using width of confidence intervals. 

  

 On the Fly with Confidence Intervals

 

My method for getting sample size on the fly came out of the conviction that confidence intervals are what 

make results interesting, not statistical significance. An effect with a narrow confidence interval tells you a 

lot about what is going on in a population; an effect with a wide confidence interval tells you little. And 

effects with narrow confidence intervals are publishable, regardless of whether they are statistically 

http://www.sportsci.org/resource/stats/ssdetermine.html
http://www.sportsci.org/resource/stats/sscorr.html
http://www.sportsci.org/resource/stats/ssmean.html
http://www.sportsci.org/resource/stats/ssfreq.html
http://www.sportsci.org/resource/stats/ssother.html
http://www.sportsci.org/resource/stats/ssother.html
http://www.sportsci.org/resource/stats/ssother.html#ethics
http://www.sportsci.org/resource/stats/ssother.html#statsig
http://www.sportsci.org/resource/stats/ssother.html#spread
http://www.sportsci.org/resource/stats/ssother.html#statsig


114 
 

significant. So all we have to do is decide on the width of the confidence interval, then keep sampling until 

we get that width. That's it, in a nutshell. The rest is detail. 

What is the appropriate width for the confidence interval? On the previous page I argued that, for very small 

effects, a narrow-enough 95% confidence interval is one that makes sure the population effect can't be 

substantially positive and substantially negative. In the case of the correlation coefficient, the width of the 

resulting interval is 0.20 units. It turns out that we can make this width the required width of our confidence 

interval for all except the highest values of correlation coefficient. Here's why. 

The threshold values of correlation coefficients for the different levels of the magnitude scale are separated 

by 0.20 units. This separation of 0.20 units must therefore represent what we consider to be a noticeable or 

worthwhile difference between correlations. It follows that the confidence interval should be equal to this 

difference: any wider would imply an uncertainty worth worrying about; any narrower would imply more 

certainty than we need. It's that simple! 

Acceptable widths of confidence intervals for the other effect statistics are obtained by reading them off the 

magnitude scale. The interval for the effect-size statistic gets wider for bigger values of the statistic. The 

same is true of the relative risk and odds ratio, but confidence intervals for a difference in frequencies have 

the same width regardless of the difference. 

A bonus of having a confidence interval equal to the width of each step on the magnitude scale is that the 

interval can never straddle more than two steps. So when we talk about a result in qualitative terms, we can 

say, for example, that it is large, or moderate-large, orlarge-very large. But fortunately we cannot say that it 

is small-large or similar, which seems to be a self-contradiction. 

Actually, there are occasions when you need a narrower confidence interval. Remember that a correlation 

difference of 0.20 corresponds to a change of 20% in the frequency of something in a population group, so 

in matters relating to life and death an uncertainty of less than ±10% would be desirable. Correlations in the 

range 0.9-1.0 also need greater precision. 

  

Right, let's get back on the main track. How come we need smaller samples for bigger effects? That's just 

the way it is with correlations. For the same width of confidence interval, you need less observations as the 

correlation gets bigger. Here's a figure showing the necessary sample size to give our magic confidence 

interval of 0.20 for various correlations: 

 

 

 

Notice that for very large correlations you need a sample size of only 50 or so, but to nail a correlation as 

being small to very small, you need more like 400. I'll now describe the strategy for correlations. 

 ON THE FLY FOR CORRELATIONS

 

The research question here is simply this: how linear is the relationship between two numeric variables, like 

weight and height? The extent of the linearity is captured beautifully by the correlation coefficient, so that's 

the outcome statistic we focus on. 

As I've explained already on the previous page, to do the research on the fly, you keep sampling until the 

confidence interval for the correlation falls below 0.20. Here's how to go about it. 
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1. What's the maximum the correlation could ever be in the population you are studying? Start with a 

sample size that would give a confidence interval of 0.20 for that correlation. Use the graph below to 

read off this sample size. (The graph is just an adaptation of thefigure on the previous page, to allow 

you to get the sample size corresponding to any correlation.) 

 

 
Curve is fitted to empirically-derived sample sizes 

that give confidence intervals of 0.20 for correlations 

in the "middle" of the steps of the magnitude 

scale. More information and simulation program. 

2. The smallest sample size is about 45, which corresponds to correlations of 0.82 or higher. 

Correlations of 0.90 or more are a special case I'll deal with separately. 

3. Do the practical work and calculate the correlation for the initial sample. 

4. If the observed correlation is higher than the correlation corresponding to the initial sample size, the 

confidence interval must be less than 0.20, so the study is finished. If not, go to the next step. 

5. Use the graph to read off the sample size that would give your correlation a confidence interval of 

0.20. 

6. Subtract the current total sample size from that sample size on the graph. The result is the number 

of subjects for the next lot of practical work. 

7. Do the practical work, add the new observations to all the previous ones, then calculate the 

correlation for the whole lot. 

8. If the correlations is higher than the previous correlation, the confidence interval must be less than 

0.20. The study is finished. Otherwise go to Step 4. 

Here's an example. You want to find the correlation between height and weight in a population. You think it 

will be very large, so you start with 45 subjects. You get a correlation of 0.71. The graph shows the 

corresponding sample size is about 95. So sample another 50 subjects (= 95 - 45), then calculate the 

correlation for all 95. You get 0.67, which means about 120 subjects. Off you go, test another 25. This time 

the correlation for all 120 subjects is 0.69. Stop. Publish. 

The chance that you will finish on each round after the initial one is 50% or less, so the chance of having to 

go more than three extra rounds is about 10% or less. By then, my simulations show that typically you're 

adding only 5% to the total number of subjects, so you'll converge rapidly on the final correlation. 

  

Confidence Limits for the Correlation 

  

Naturally, you're expected to give the confidence limits of the correlation coefficient you end up with. If your 

stats program doesn't generate them, you'll have to use the Fisher z transformation: 

z = 0.5log[(1 + r)/(1 - r)]. The transformed correlation (z) is normally distributed with variance 1/(n - 3), so 

the 95% confidence limits are given by z ± 1.96/sqrt(n - 3). You then have to back-transform these limits to 

correlation coefficients using the equation r = [(e2z - 1)/(e2z + 1)]. This is standard stuff for statisticians, but 

as a mere mortal you'll be struggling. I've set it up on the spreadsheet for confidence limits. 
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 More on the Initial and Final Sample Sizes

 

You will be tempted to start with 45 every time, hoping that you won't have to do any more. But funnily 

enough, starting with this small sample, you could end up testing more subjects than necessary! For 

example, if the correlation in the populations is moderate (~0.4), a sample of 45 will sometimes produce a 

small correlation (~0.2), and when that happens you're supposed to test about 300 subjects on the next 

round. But if you had opted for, say, 200 to start with, you'd be unlikely to have to test another 150 on the 

next round. 

But there's an acceptable cheat's way around this problem that allows you to start with 45 every time. All 

you do is set an upper limit on the number of subjects you will test, then take the limit off. For example, start 

with 45 subjects, but if the next round requires 250 more, you test only 100. Then you work out how many 

more you need from the total of 145, and test them. 

However you do it, you'll get there in the end. And the answer will be trustworthy: I've found that the 

greatest bias occurs for correlations around 0.7-0.8, but it is only 0.01. This amount of bias--5% of the 

confidence interval--is negligible. What's more, the bias is insensitive to the initial sample size, and there is 

no noticeable extra bias when you set reasonable limits to the sample size on each extra round of sampling 

(e.g. 100 on the first round, 200 on the second and/or higher rounds). So even if you haven't got the 

resources to go to the full 400 subjects, you can still get a practically unbiased estimate of the correlation, 

albeit with a less-than-ideal confidence interval for the smallest correlations. 

  

 Adjusting for Imperfect Validity

 

Imperfect validity of one or both variables in the correlation degrades the apparent relationship between 

them. If the correlation you're chasing has a true value of r, and the validities are v and w, then the 

correlation you will observe, say r', is r·v·w, which is smaller than r. But when you write up the study, you 

will say that the correlation in the population is r'/(v·w). In other words, you inflate the observed correlation 

by a factor 1/(v·w), which is, or course, greater than 1. Uh huh! So that means the confidence interval is 

also inflated by the same factor. Curses, that means we'll need more subjects to make sure the larger 

correlation still has a confidence interval of 0.20. In fact, the final number of subjects is inflated by a factor 

1/(v2w2). This factor popped up in the estimation of sample size using the traditional approach. You can use 

it on the fly, but it's a bit tricky. You have to inflate all sample sizes by the same factor on the way to 

detecting the correlation. 

Here's an example. Suppose the validity correlations are 0.90 and 0.80. Overall that's 0.72, and 0.722 is 

0.52. So start with 45/0.52 or 87 subjects. Suppose you get a correlation of 0.35. For perfect validity that 

would be a correlation of 0.35/0.72 or 0.49. On the graph that's equivalent to 220 subjects, but that's for 

perfect validity, so you need 220/0.52 or 423 subjects. So test 423 - 87 = 336 subjects. And so on. Mind-

boggling, I'm afraid. It's all much simpler if you use the spreadsheet! 

  

 Nearly Perfect Correlations

 

You'll notice I've omitted correlations in the nearly perfect range on the graph for estimating sample sizes. If 

a correlation is this high, the relationship it represents is probably a reliability or a validity, or it may be a 

linear relationship used for predicting something. Confidence intervals less than 0.20 are needed for these 

correlations. Exactly how much less is a difficult question that I'm still working on. 

Meanwhile, start with a sample of about 15 and see what you get for the correlation and for its confidence 

limits. You'll almost certainly find that the lower confidence limit is too low, unless you're lucky enough to 

get a correlation of 0.98 or 0.99. So you'll need more subjects. Estimate the sample size for the next round 

using the rule that the width of the interval is approximately inversely proportional to the square root of the 
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sample size. Then test the extra subjects, recalculate the correlation and its confidence limits, and go to 

another round if necessary. 

For example, let's suppose you get a correlation of 0.91 with 15 subjects. The 95% confidence limits are 

0.97 and 0.75. Well, if the correlation is really 0.97, that's great for every possible purpose. But 0.75 is 

hopeless for applications requiring an almost perfect correlation! Obviously you need to narrow down the 

confidence interval. Halving the interval would help, which means a total of 4x as many subjects, or another 

45. Test them, add them to the original 15, then recalculate. Suppose you get 0.93. The 95% confidence 

limits are now 0.96 and 0.89. Whether you stop at this point or go to another round of testing depends on 

whether 0.89 makes a big difference compared with 0.96, for the application you have in mind. I'd stop 

there if I was defining the validity of a variable for the purpose of seeing how many extra subjects I might 

need in a big cross-sectional study. I'd want to narrow down the interval a bit more if I wanted to use the 

underlying linear relationship to predict things like body fat from skinfold thickness. And I'd probably want to 

narrow it down more if the correlation was a reliability I was using to predict a sample size in a longitudinal 

study, using the old-fashioned approach. 

For another example, imagine that you got a correlation of 0.98 with your initial sample of 15. The 

confidence limits are 0.96 and 0.99. No need to test any more subjects! 

 ON THE FLY FOR DIFFERENCES BETWEEN MEANS

 

How many subjects do you need to see how females and males differ in strength? For cross-sectional 

studies like this, where you're looking at the difference between means of two groups, you use the same 

method as for correlation coefficients,. The main difference is that you use the effect-size statistic rather 

than the correlation coefficient. You have to calculate its value each time yourself, because current stats 

programs don't. 

A variant of the method also works for longitudinal studies--for example, where you want to compare the 

strength of females before and after they take a hormone that makes them like males. We'll come to those 

in a minute. 

  

 Cross-Sectional Studies

 

As before, you keep sampling until you get a sample size that gives an acceptable confidence interval for 

the outcome statistic, the effect size. But calculating the effect size causes a bit of a problem. 

Recall that the effect size is the difference between the means divided by the average standard deviation of 

the two groups. Well, the standard deviation calculated from your sample introduces some error of its own, 

which contributes to error in the effect size. So if you have a more accurate estimate of the population 

standard deviation from elsewhere, use it instead of the value from your sample. It can mean 40 less 

subjects, depending on how big the effect is. It also makes calculating the confidence limits of the effect 

size a lot easier. 

Here's the method, for either standard deviation. 

1. Start with about 40 or more subjects (20 or more in each group), knowing that you might have to go 

to nearly 400 if the effect turns out to be trivial. 

2. If validity is less than perfect, inflate the starting number and make further adjustments as described 

for correlations. Not an easy task! 

3. Do the practical work, then calculate the difference between the means. 

4. Convert the difference between the means into an effect size by dividing it by the standard 

deviation. Use the population standard deviation if available, or calculate the average standard 
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deviation of your two groups if not. Make sure you average the variances of the two groups, then 

take the square root to get the average standard deviation. Don't forget to log or rank transform the 

dependent variable if necessary (which may complicate the use of any available population 

standard deviation). 

5. Use the appropriate curve on this graph to read off the sample size needed to give an acceptable 

confidence interval to your effect size. Or license holders can use the spreadsheet, which also 

adjusts for validity. 

 

 
Each curve was drawn through the point in the 

middle of each step of the scale that gives a 

confidence interval just spanning the step. See 

the simulation program for more information. 

6. If the sample size from the graph is less than the initial sample size, the confidence interval is 

already narrower than the acceptable confidence interval, so the study is finished. Otherwise go to 

the next step. 

7. Subtract the current total sample size from that sample size on the graph. The result is the number 

of subjects for the next lot of practical work. You can "cheat" by doing the practical work on less 

than this number, if it's a big leap to nearly 400 from the previous number. This trick will help make 

sure you don't test too many subjects, as I described for correlations. If the effect turns out to be 

trivial, you will still eventually end up with nearly 400, of course! 

8. Divide the extra subjects equally into the two groups, do the practical work, add the new 

observations to all the previous ones, then calculate the effect size for the whole lot. 

9. If the effect size is greater than the previous value, the confidence interval must be narrower than 

the acceptable confidence interval, so the study is finished. Otherwise go to the next step. 

10. Use the graph to read off the sample size needed to give an acceptable confidence interval to your 

effect size. Now go to Step 7, and continue in this fashion until you reach a sample size that gives 

an acceptable confidence interval. 

Cool! You've got a value for the effect size, and you've done it with the minimum number of subjects, and 

it's practically unbiased by doing it on the fly, and you know that its confidence interval is narrow enough 

that it can't overlap more than two steps (colors) on the qualitative magnitude scale. But what exactly is the 

value of the confidence interval? If I end up refereeing your paper, I'll insist you put it in! Here's how to get 

it. 

  

Confidence Limits for Effect Size (Cross-sectional Studies) 

  

If you used the population standard deviation for sample sizing on the fly, get your stats program to 

produce the confidence interval of the raw difference between the means for the final sample. Divide this 

confidence interval by the population standard deviation and you have the exact confidence interval for the 

effect size. The observed effect size sits symmetrically in the middle of this confidence interval. If you can't 

get your stats program to produce the confidence interval of the difference score, the confidence interval of 

http://www.sportsci.org/resource/stats/ssother.html#spread
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the effect size is given exactly by 2t·sqrt(4/N), where N is the total sample size, and t is the value of the t 

statistic for N - 2 degrees of freedom and cumulative probability 0.975. The value of t is near enough to 2.0. 

If you used the sample standard deviation on the fly, the resulting effect size is biased a bit high for small 

total sample sizes (N). Adjust out the bias using this formula: 

          unbiased ES = (observed ES)(1 - 3/(4N - 1)). 

Now use the following fairly accurate formula to calculate the 95% confidence interval for the unbiased 

effect size: 

          95% confidence interval = 4sqrt(4/N + ES2/(N - 2)). 

The confidence limits are therefore given fairly accurately by: 

          ES ± 2sqrt(4/N + ES2/(N - 2)), 

but that's only for ES<1.0. For larger values of ES, the limits start to sit asymmetrically about the observed 

value of ES. Then the going gets really tough. The exact values of the confidence limits are given by 

t·sqrt(4/N), where t is the value of the non-central t statistic with degrees of freedom = N - 2, non-central 

parameter = ES·sqrt(N/4), and cumulative probabilities of 0.025 and 0.975 for the lower and upper limits 

respectively. Only advanced stats programs can produce values for the non-central t statistic. 

All the above formulae are available on the spreadsheet, with the exception of the non-central t statistic. I 

will add it when Excel does. 

Reference for formulae: 

Becker, B. J. (1988). Synthesizing standardized mean-change measures. British Journal of Mathematical 

and Statistical Psychology, 41, 257-278. 

  

 Longitudinal Studies

 

In longitudinal studies we are interested in seeing how much a mean changes as a result of an intervention, 

for example the change in swimming speed resulting from a new training technique. We compute the mean 

of the post minus pre scores to get the change. Now, the confidence interval of that post-pre difference is 

extremely sensitive to the reliability of the outcome measure. For almost perfect reliability, the confidence 

interval is very narrow compared with what it would be in a cross-sectional study, so we can get away with 

using a far smaller sample size than in a cross-sectional study. 

But if we use the sample standard deviation to calculate the effect size, there is a major hitch. With the 

small sample sizes that are possible, the error in the standard deviation is proportionally larger, so the 

confidence interval of the effect size ends up large after all, so we lose the benefit of the high reliability and 

end up with larger sample sizes again. The calculations are difficult, too. 

On the other hand, if we know or can guess the population standard deviation, all is saved. So I'll 

concentrate on a method that uses the population standard deviation, then deal briefly with the use of the 

sample standard deviation. 

  

Using Population SD to Calculate Effect Size and its Confidence Limits 

  

This method works for the effect size in cross-sectional or longitudinal designs of any kind, and for 

any estimates/contrasts between levels of within and between factors. Wow! The only challenge for you is 

to coax your stats program to produce a confidence interval for the raw difference between the means, or 

for whatever estimate/contrast you are interested in. You then simply convert that to a confidence interval 

for the effect size by dividing it by the population standard deviation, see if the confidence interval is narrow 

enough, and if it's not, work out how many more subjects you'll need. 

This paragraph may confuse you. Skip to the method in the next paragraph if it does. To get an idea of the 

kind of sample sizes you can end up with, you can apply the formulae I presented earlier for the effects of 

reliability on sample size. The only difference is, the "N" in the formulae is now the sample size you would 

need for a cross-sectional study, as shown by the curve in the above graph for population SD. So, the 
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sample size for a longitudinal study with a single pre and post measurement and no control group is 

N(1 - r)/2, where r is the reliability correlation coefficient. If there is a control group, you need twice as many 

in both groups, or 2N(1 - r) altogether. Let's check out an example on the graph above. If your effect size 

turns out to be in the middle of the medium range, you'd end up needing about 200 subjects for a cross-

sectional study. But if your reliability is 0.9, that'll come down to 10 subjects for a study without a control 

group! Fantastic! If your reliability is 0.95--not out of the question for some outcome measures--you'd need 

only 10 subjects in each group of a properly controlled study. It will be even less for larger effects. But 

check the graph: you might still have to go to nearly double that number if the effect size turns out to be 

zero. 

OK, here's how the method works. It's the usual iterative process, but this time it relies on the fact that the 

width of the confidence interval is inversely proportional to the square root of the sample size. 

1. If you have high reliability and the effect is very large, ridiculously small sample sizes are possible. 

But you have to be careful when you're down to five or so subjects, because you might end up with 

a sample that is not typical of the population. Papers do get published with six subjects in each 

group, but I'd feel safer with a minimum of eight. If your reliability is unlikely to be better than 0.9, or 

your effects are probably small-medium, start with 10-15. That means 10-15 in a single group if it's a 

study without a control group, or 10-15 in each group if there's a control group or several 

experimental groups. 

2. Do the practical work, then crunch the numbers to get the difference between the means of interest, 

or do whatever other estimate/contrast you like. By the way, when you have a control group, the 

difference you want is the post-pre difference score for the experimental group minus the post-pre 

difference score for the control group. 

3. Get your stats program to produce the confidence interval for the difference. Convert it into effect-

size units by dividing it by the population standard deviation. Convert the difference itself into an 

effect size in the same way. 

4. Use this figure to read off the acceptable confidence interval for your effect size, or use 

the spreadsheet, which also performs subsequent calculations and takes account of less-than-

perfect validity. 

 

 
The way I derived this curve and validated the 

on-the-fly method is described on separate 

pages for longitudinal studies without a control 

group and with a control group. 

5. If your observed confidence interval is less than the acceptable confidence interval, the study is 

obviously finished. If not, go to the next step. 

6. Divide your observed confidence interval by the acceptable confidence interval, square the result, 

then multiply it by the total number of subjects you have tested. That's your next target total number 

of subjects. 

7. Subtract the current total sample size from that target total. The result is the extra subjects for the 

next lot of practical work. Divide them equally into the groups, if there is more than one group. 
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8. Do the practical work, add the data to the previous data, then go to Step 3. 

The confidence interval of the final effect size is no problem, this time. You've been calculating it all along. 

  

Using Sample SD to Calculate Effect Size and its Confidence Limits 

  

You go through the same steps as for use of the population SD, but you have to calculate the confidence 

interval for the effect size using the sample SD. You then use this calculated confidence interval in Step 3. 

Here's how to calculate the confidence interval. If you have a control group, I will assume it has the same 

number of subjects as the experimental group. 

 Calculate the effect size using the average variance, as described in Step 4 for cross-sectional 

studies. If you've got a control group too, average all four variances before you take the square root. 

 Correct out the bias in the effect size, using this formula: 

unbiased ES = (observed ES)(1 - 3/(4N - 1)), where N is the total sample size (experimental plus 

any control). 

 Calculate the reliability (r) of the dependent variable, preferably as an intraclass correlation, but 

otherwise as a Pearson correlation. Do it using the experimental data: a shift in the mean due to the 

intervention does not affect the reliability. If you have a control group, use the average reliability of 

the control and experimental group. A proper average should be done via the Fisher z transform, 

but if the correlations are fairly similar it won't matter if you just take the usual mean. 

 Calculate an approximate confidence interval for the ES using this formula: 

4sqrt(2(1 - r)/N + ES2/(2(N - 1)) if there is no control group, or 

4sqrt(8(1 - r)/N + ES2/(2(N - 4)) if there is a control group. 

When you've done your sampling on the fly, the confidence limits of the effect size, for effect sizes <1, are 

given by the final effect size ± half the confidence interval. For effect sizes>1 there is that problem of the 

confidence interval not sitting symmetrically around the effect size... 

For studies without a control group, the exact values of the confidence limits are given by t·sqrt(4(1 - r)/N), 

where t is the value of the non-central t statistic with degrees of freedom = N - 2, non-central parameter 

= ES·sqrt(N/(4(1 - r)), and cumulative probabilities of 0.025 and 0.975 for the lower and upper limits 

respectively. 

For studies with a control group, the exact values of the confidence limits are given by t·sqrt(8(1 - r)/N), 

where t is the value of the non-central t statistic with degrees of freedom = N - 2, non-central parameter 

= ES·sqrt(N/(8(1 - r)), and cumulative probabilities of 0.025 and 0.975 for the lower and upper limits 

respectively. 

If only the stats programs would do these calculations...! I've put most of them on the spreadsheet, but I 

can't do anything about non-central t statistics until Excel does. 

If you've got this far, you will no doubt be interested in a simulation that validates the on-the-fly method for 

the case of no control group. It includes an empirical check on the formulae when there is a control group. 

Now for something a little easier: on the fly for differences in frequencies. 

 

 ON THE FLY FOR DIFFERENCES BETWEEN FREQUENCIES

 

Now you're interested in things like the difference in the frequency of injury in two groups. For example, if 

you found that 47% of runners and 15% of cyclists have an injury each year, how many runners and 

cyclists would you have needed in the study for the result to be publishable? Publishability depends on the 

confidence interval for the difference between the frequencies, of course. Obviously 10 runners and 10 
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cyclists would give a hopelessly unpublishably wide confidence interval, and equally obviously 10,000 of 

each has got to be overkill! 

You can use sample size on the fly to get the minimum number of subjects, but you don't get quite the 

same saving as for correlations or means. I've used simulation to see how many subjects you need to give 

acceptable confidence limits for a wide range of frequency differences. I've found that it's at least 100 

subjects, even for very large effects, so that will have to be our starting number. 

The other thing we need for sample size on the fly is an acceptably narrow confidence interval for the 

outcome statistic. It's straightforward if we use the difference in frequencies as the outcome, but it gets 

really complicated if we use relative risk or the odds ratio. Let me explain with the example of injury in 

runners and cyclists. 

The difference in rates of injury can be expressed either as a difference in the percentage rates 

(47 - 15 = 32%), or as a relative risk of injury (runners have 47/15 = 3.1 times the risk of cyclists). The 

acceptable width of the interval for a difference in the percentage rates is a fixed 20%, as I explained 

earlier. In our example the difference is 32%, so the required publishable confidence limits are 22% to 42%. 

Expressed as a relative risk, these frequencies correspond to 3.1, with confidence limits 2.1 to 5.1. But 

suppose the original frequencies were 67% and 52%. The difference in frequencies is still 32%, and the 

acceptable confidence limits on this difference are still 22% to 42%. But now the corresponding relative risk 

is 1.9, with confidence limits 1.5 to 2.5 What a mess! The odds ratio misbehaves in the same way for case-

control data. 

So here's the method, based on the confidence interval for the differences in frequencies between the 

groups, expressed as percents. 

1. Start with a sample size of 100 (50 in each group). 

2. Do the practical work. That often means interviewing subjects, or waiting for them to get sick or 

injured! 

3. For each group, count up the number of subjects with the thing you're interested in (e.g. an injury). 

Express it as a percent for each group, then subtract one from the other. That's the frequency 

difference. 

4. You are aiming for a confidence interval of 20% for that frequency difference. What's the current 

confidence interval? Once again, stats programs don't produce it, but it can be derived from 

something called the normal approximation to the binomial distribution. Here it is, in the right percent 

units: 

      392·sqrt((n1(n - n1) + n2(n - n2))/n3 ), 

where n1 and n2 are the numbers (not %) of subjects with the thing of interest in groups 1 and 2, and 

n is the number of subjects in EACH group (50 to start with). My simulations show that this formula 

is surprisingly accurate, even for very low n1 and n2 (~1%, with only 50 in each group!). 

5. If this confidence interval is less than 20, the study is finished. Otherwise go to the next step. 

6. To estimate the number of subjects required to bring the confidence interval down to 20, we make 

use of the fact that the width of the confidence interval is inversely proportional to the square root of 

the sample size. So, divide the current confidence interval by 20, square the result, and multiply it by 

the current number of subjects in each group. The result is the predicted total number of subjects 

needed. 

7. Subtract the current number of subjects in each group from the predicted number. The result is the 

number of subjects needed in each group for the next round of practical work. You can "cheat" by 

doing the practical work on less than this number, if it's a big leap to nearly 400 from the previous 

number. This trick will help make sure you don't test too many subjects, as I described for 

correlations and effect sizes. If the difference in frequencies turns out to be trivial, you may still end 

up with a final sample size of up to 200 in each group. 
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8. Do the practical work on the extra subjects, add them to all the previous subjects, then go to Step 3. 

All computations in the above procedure are available on the spreadsheet, which includes the case of 

unequal numbers of subjects in the groups. 

How do you present the final outcome? Obviously you need to show the frequency of the injury or whatever 

as a percent in the two groups. You should also show the confidence limits for the difference in frequencies 

(confidence limits = the difference in frequencies ± half the confidence interval, which you will have 

calculated in the last iteration of the sampling process). That's it, as far as I am concerned, but for a clinical 

journal you may have to show a relative risk or an odds ratio. If the editor of the journal insists on one or 

other of these effect statistics, put it in, and get your stats program to calculate its confidence limits. 

To describe the outcome of your research in qualitative terms, check where the confidence limits of the 

frequency difference fall on the scale of magnitudes. Here's a version of it for frequency differences: 

 

 
 

For example, if the limits are 22% and 42%, the effect is small-moderate; if they are -5% and 15%, the 

effect is trivial-small, and so on. 

 ON THE FLY: MISCELLANEOUS

 

On this last page devoted to sample size on the fly, I explain how to use it for any design and any outcome 

statistic. I then suggest what to say to the ethical committee when you apply for approval. I also warn you 

not to use statistical significance for sampling on the fly. 

 ON THE FLY FOR OTHER DESIGNS

 

Whatever the design and whatever the outcome statistic, if your stats program can produce a confidence 

interval for the outcome statistic, you can sample on the fly. Here is the procedure. First I explain how to do 

it for outcome statistics whose confidence interval has a width proportional to the square root of the sample 

size. 

1. Decide on an acceptable width for the confidence interval of your outcome statistic. If the outcome 

statistic is a correlation coefficient or a frequency difference, there's no problem: the acceptable 

widths are 0.20 for a correlation and 20% for a frequency difference. Or you can choose a narrower 

confidence interval for the frequency difference, if it's a matter of life and death. 

2. If the outcome is an effect size, the width depends on the value of the effect size, as shown in 

the figure on the page devoted to differences between means. 

3. For other outcome statistics, work out what seems like a reasonable acceptable width for its 

confidence interval. It may depend on the magnitude of the statistic. For example, the relative risk 

and odds ratio clearly need wider confidence intervals for larger values of the statistic. 

4. Start with a reasonable sample size. If it's a cross-sectional design, it will probably be around 50 

subjects. If it's a longitudinal design and the outcome is derived from the repeated measure, then 10 

or so will probably do the trick, provided the reliability isn't too bad. 

5. The rest will sound familiar! I've copied it from the method for means in longitudinal studies. 

6. Do the practical work. 
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7. Calculate the value of the outcome statistic and its confidence interval. 

8. If your observed confidence interval is less than the acceptable confidence interval, the study is 

finished. If not, go to the next step. 

9. Divide your observed confidence interval by the acceptable confidence interval, square the result, 

then multiply it by the total number of subjects you have tested. That's your next target total number 

of subjects. 

10. Subtract the current total sample size from that target total. The result is the extra subjects for the 

next lot of practical work. 

11. Do the practical work, add the data to the previous data, then go to Step 7. 

If the confidence interval of your outcome statistic is not inversely proportional to the square root of the 

sample size, replace Step 9 with the following elegant procedure (which allows you to work out the 

relationship between sample size and the width of the confidence interval): 

1. Make a double-sized sample by simply duplicating the sample and adding it back in with itself. 

2. Analyze the double-sized sample with the stats program to get the confidence interval. 

3. Add the new sample to itself to get a sample four times as big, then analyze it for the confidence 

interval. 

4. Repeat to analyze a sample eight times as big, and 16 times as big. 

5. Now plot sample size vs confidence interval, connect the points with a smooth curve, and read off 

the sample size corresponding to an acceptable confidence interval for the value of the outcome 

statistic from Step 7. Now go to Step 10. 

  

 ON THE FLY FOR THE ETHICAL COMMITTEE

 

You need to convince the ethical committee that you have the resources to go to the usual large number of 

subjects, if the effect turns out to be small. So you will have to provide an estimate of the worst-case 

sample size. You'll have to justify it using my approach with confidence intervals (which requires half the 

usual number), because you can't let statistical significance get anywhere near sample size on the fly. The 

two do not mix, as we'll see shortly. 

To do a cross-sectional study properly, you must have the resources to test hundreds of subjects, if 

necessary. Don't forget to take into account known or guessed validities, which could push the number up 

by a factor of two or three. 

For a longitudinal study, reliability is crucial for calculating how many subjects you might need. If you don't 

know or can't guess the reliability, you have to tell the committee that you simply don't know how many 

subjects you might end up with. So tell them that testing 10 or so subjects per group will be enough to 

detect large effects if the reliability is almost perfect, and it will give you enough data to estimate roughly the 

final sample size otherwise. Indicate the total number you will be able to test, and admit that this number 

may not be enough if the reliability turns out to be low. You will end up with a confidence interval that is 

wider than optimum, but the result may still be publishable. There's nothing you can do about it, and there's 

no ethical justification for your application to be refused, if you've got everything else right. After all, if no-

one knows the reliability, someone has to start testing to find out how many subjects are needed. And it 

makes sense to do it during the experiment itself rather than to waste resources on a reliability study. But if 

you already have data from a reliability study, point out that uncertainty in the reliability makes a big 

difference to the estimate of the worst-case final sample size, so you might still be wrong with your 

estimate. 

  

http://www.sportsci.org/resource/stats/sscl.html
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 DO NOT FLY WITH STATISTICAL SIGNIFICANCE

 

It's important to understand that you sample until you get a narrow confidence interval. You do NOT sample 

until you get statistical significance. Let's see why. 

If statistical significance is your goal, you would presumably start with a sample big enough to give 

statistical significance for large effects. For example, you might start searching for a correlation of 0.6, 

which you would want to find statistically significant (p<0.05) 80% of the time. From the formulae, the 

number of subjects is 13, so let's say you start with this number. If you get statistical significance, you stop. 

If not, you test more subjects. 

Seems OK, but there are two things wrong. If the correlation does turn out to be statistically significant on 

the first go, it has such a wide confidence interval that the correlation in the population is likely to be 

anything from practically perfect down to trivial. In other words, there's an effect, yes, but you end up with 

little idea of how big it is. 

The other problem is more serious: bias! With a true correlation of 0.6, a starting sample size of 13, and up 

to three rounds of extra sampling, the sample correlation ends up at 0.65 on average. For a true correlation 

of 0.40, the sample correlation averages 0.50. This amount of bias is unacceptable. Starting with a bigger 

sample helps, but as long as you make stopping contingent upon statistical significance, you will have 

substantial bias for most values of correlation. For example, a true correlation of 0.20 and a starting sample 

of 45 produce a correlation of 0.25 on average in the final sample. You could start with hundreds of 

subjects, I suppose, but by then you'd have defeated the purpose of sample sizing on the fly! 

I wonder if sampling on the fly using statistical significance is a widespread practice, without people 

realizing it. By people I mean everyone, including the experimenters themselves. It's all too easy to start a 

study with a small sample, stop if you get statistical significance, or do a few more subjects to bring a 

promising p value below the 0.05 threshold! 

A FINAL WARNING. Opting for sample size on the fly, then sky diving as soon as you get statistical 

significance, is forbidden. If your paper comes to me for review, I will reject it on the grounds that the result 

is biased and that the confidence interval is too wide. 

  

 Spreadsheet

 

My apologies, folks. I have yet to do the spreadsheet, because it requires values of a statistic (non-central 

F) that is not yet available in Excel. I have a link to a plug-in that does the trick. One of these days I will do 

it. Meanwhile, use the graphs, or the generic method I outlined above. 

 

 SIMULATION FOR SAMPLE SIZE

 

Simulation is where you make up data and analyze them. It's valuable at the planning stage of a complex 

study, if you're not sure how many subjects you need. It's also a great way to work out how to use a stats 

program. 

  

 Steps in the Process

 

Simulating to get sample size consists of the following steps: 

1. Generate values for the variable(s) for a sample of subjects, usually by drawing them at random 

from a normal distribution. 

http://www.sportsci.org/resource/stats/ssdetermine.html#cross
http://www.sportsci.org/resource/stats/ssonthefly.html#bias
http://www.sportsci.org/resource/stats/ssother.html#other
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2. Introduce an effect, such as a difference between means or a correlation. Make the effect big to 

start with, but eventually you use the smallest worthwhile effect. 

3. Adjust data to take into account likely validity and/or reliability, if necessary. 

4. Calculate the effect statistic and either its confidence interval or its p value. 

5. If a narrow confidence interval is your goal, go back to Steps 1 or 2 and repeat with different effect 

magnitudes or sample sizes until you get the sample size that will give the acceptable confidence 

interval for the smallest worthwhile effect. Stop. 

6. If statistical significance is your goal, repeat Steps 1-4 hundreds of times, with new subjects each 

time, then work out how many times (as a percent) the smallest effect is statistically significant. 

Voilà, that is the power of the design, for the given sample size. 

7. Repeat Step 6 with a bigger or smaller sample until you find the sample size that gives acceptable 

power (usually 80%) for the smallest effect. Stop. 

Even if you can't make your program do the above steps automatically, it's worth making up some values 

and entering them by hand into a data set, then analyzing them. Make the effect you're interested in big to 

start with, so you can see which part of the output of the program corresponds to the thing you're looking 

for. Then try it with a small effect, and see if you still get significance. Remember that in the traditional 

approach, the smallest worthwhile effect is supposed to turn out significant 80% of the time. 

Regard the rest of this page as an appendix. I describe how I generate subjects and variables in SAS. The 

SAS language is a kind of BASIC, so you should be able to follow it and adapt it to other programs. I show 

a simulation for a cross-sectional study (where validity can be an issue), and for a longitudinal study (where 

reliability is crucial), and only for a numeric dependent variable. 

  

 Cross-Sectional Study

 

Let's make two groups of 100 subjects differing by an effect size of 0.2 for a variable with validity 0.9. 

In SAS the function rannor(0) generates one randomly chosen value for a normally distributed variable with 

population mean of 0 and SD of 1. (The "0" has nothing to do with a mean of 0, by the way. It is just a 

starting "seed" number.) Your stats program should have something like rannor(0). Here I have assigned it 

to a variable called true (standing for a subject's true value) 

true=rannor(0) 

I usually stick with means of 0 and SDs of 1, but if you wanted to make it, say, 70 ± 6, you'd 

write true=70+6*rannor(0) 

These few lines of code generate 100 subjects: 

do subject=1 to 100; 

  true=rannor(0); 

  output; 

  end; 

Now let's generate a variable called depvar (standing for dependent variable) with a validity of 0.9 (its 

correlation with true). I like to do it in such a way that depvar still has a mean of 0 and an SD of 1. I 

use rannor(0) again to generate a normally distributed source of error, then add a bit of it in with most of 

true. In the following, sqrt stands for square root: 

do subject=1 to 100; 

  true=rannor(0); 

  depvar=0.9*true+sqrt(1-0.9**2)*rannor(0); 

http://www.sportsci.org/resource/stats/errors.html#typeII
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  output; 

  end; 

The fact that the population correlation of depvar with true is 0.9 follows from the definition of the correlation 

coefficient (for the geeks, the correlation coefficient = the covariance of the two variables, divided by their 

SDs). Here the covariance is 0.9, and the SDs are 1. 

It's now dead easy to make another set of 100 subjects with a true effect size of 0.2 relative to the first 100. 

Study this closely, because it shows how a true effect of 0.2 is degraded to an observed effect of 0.9*0.2 

when the validity is 0.9: 

do subject=101 to 200; 

  true=rannor(0)+0.2; 

  var1=0.9*true+sqrt(1-0.9**2)*rannor(0); 

  output; 

  end; 

Now do a t test and see if you get statistical significance. Write a program to do it 1000 times and see what 

percentage of the tests gives statistical significance, and hey presto, that's your power. It would be lousy 

with only 100 subjects in each group! 

I'll leave it to you to work out how to generate a simulation for a correlation between two variables, each 

with its own less-than-perfect validity. 

  

 Longitudinal Study

 

The trick here is to generate two or more correlated repeated measures. We'll do two and call 

them repvar1 and repvar2. The correlation between the measures is the reliability correlation, of course. 

Once again you generate true values for your subjects, then add error, this time in a slightly different way . 

Let's generate repvar1 and repvar2 with a reliability correlation of 0.95 for 20 subjects: 

do subject=1 to 20; 

  true=rannor(0); 

  repvar1=sqrt(0.95)*true+sqrt(1-0.95)*rannor(0); 

  repvar2=sqrt(0.95)*true+sqrt(1-0.95)*rannor(0); 

  output; 

  end; 

There are two ways to add in an effect, let's say 0.2 for repvar2. The normal way is to add it to the true 

value, just as we did for the cross-sectional design: 

repvar2=sqrt(0.95)*(true+0.2)+sqrt(1-0.95)*rannor(0); 

But sometimes repvar is the criterion outcome measure, so it may not be appropriate to consider that the 

effect is degraded by the less-than-perfect reliability. For example, if repvar represents competitive 

performance, we may be interested in detecting an effect of 0.2 for repvar, not for true. I'm still thinking 

about this one. In such cases, this is how you add in the effect: 

repvar2=sqrt(0.95)*true+sqrt(1-0.95)*rannor(0)+0.2; 

It's possible to add finite validity along with reliability for variables in a longitudinal simulation. If the 

reliability is r, the validity is v, and the effect size is es, then the following generates two variables 

(repvar1 and repvar2) that have a correlation of r with each other and that have a correlation of v with the 

true value: 

do subject=1 to 20; 

  true=rannor(0); 

  errorv=rannor(0); 
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  repvar1=v*true+sqrt(r-v**2)*errorv+sqrt(1-r)*rannor(0); 

  repvar1=v*(true+es)+sqrt(r-v**2)*errorv+sqrt(1-r)*rannor(0); 

  output; 

  end; 

I have used this simulation to check that the formulae for longitudinal designs are correct. 
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SUMMARY: The Most Important Points 

 

 Think about differences between group means in terms of standard deviations, not standard errors 

of the mean. Mean ± SD or Mean ± SEM? 

 Learn exactly what a trivial, small, moderate, large, very large, and almost perfect effect is, for a 

correlation, a frequency difference, and the effect-size statistic. Magnitudes for Effect Statistics 

 Present as few numbers as possible: no more than two significant digits for effect statistics and 

standard deviations. How Many Digits? 

 Understand how validity impacts on cross-sectional studies and reliability impacts on longitudinal 

studies. Cross·Sectional Designs, Longitudinal Designs 

 Test enough subjects to allow you to publish any 

result. Sample·Size Estimation, Based on Confidence Limits 

 Try sample size "on the fly" in your next project, but base it on width of the confidence interval, not 

statistical significance. On The Fly 

 Explore a stats program by making up data with an effect, then analyzing them. Simulation 

 Before you do any modeling (statistical tests), look at your data to see what's going 

on. Effect Statistics 

 Keep your eye on standard deviations or scatter of points, to decide whether log or rank 

transformation is needed before you fit a 

model. Residuals: Bad, Log Transformation, Rank Transformation 

 If you have repeated measures with missing data, get a statistician to help you model 

covariances. Modeling Covariances 

 Know the difference between statistically significant and 

substantial. Confidence Limits, Magnitudes for Effect Statistics 

 Show confidence intervals instead or, or as well as, p values. P Values 

 Stop asking "is there an effect?" Start asking "how big is the effect?" Hypothesis Testing 

 Stop thinking about testing. Start thinking about estimating. Hypothesis Testing 
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http://www.sportsci.org/resource/stats/effectmag.html
http://www.sportsci.org/resource/stats/digits.html
http://www.sportsci.org/resource/stats/ssdetermine.html#design
http://www.sportsci.org/resource/stats/ssdetermine.html#long
http://www.sportsci.org/resource/stats/samplesize.html
http://www.sportsci.org/resource/stats/sscl.html
http://www.sportsci.org/resource/stats/ssonthefly.html
http://www.sportsci.org/resource/stats/sssim.html
http://www.sportsci.org/resource/stats/effect.html
http://www.sportsci.org/resource/stats/modelsdetail.html#hetero
http://www.sportsci.org/resource/stats/logtrans.html
http://www.sportsci.org/resource/stats/nonparms.html
http://www.sportsci.org/resource/stats/threetrials.html#mixed
http://www.sportsci.org/resource/stats/generalize.html#viacl
http://www.sportsci.org/resource/stats/effectmag.html
http://www.sportsci.org/resource/stats/pvalues.html
http://www.sportsci.org/resource/stats/pvalues.html#hypothesis
http://www.sportsci.org/resource/stats/pvalues.html#hypothesis
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QUIZ 

 

Each question has either only one correct answer or one incorrect answer. The answers appear in the 

lower frame when you click on answer. Links to the appropriate sections of the text are also included. 

 

1. A frequency distribution can be shown as 

 a statistic 

 a histogram 

 a scatter plot 

 a stem and leaf plot 

answer · Basics 

2. Simple statistics are 

 for simpletons 

 presented in stem and leaf plots 

 things like correlations 

 things like standard deviations 

answer · Simple Statistics 

3. What would you do with a median? 

 Use it do show spread. 

 Use it for normally distributed data. 

 Cross it against oncoming traffic 

 Indicate the middle of some data. 

answer · Simple Statistics 

4. The following are measures of spread: 

 standard deviation 

 root mean square errors 

 percentile ranges 

 polyunsaturated margarine 

answer · the Spread 

5. Which arrow indicates the standard error of the estimate? 

 

 A 

 B 

http://www.sportsci.org/resource/stats/quizanswers.html#0
http://www.sportsci.org/resource/stats/quizanswers.html#1
http://www.sportsci.org/resource/stats/summarize.html
http://www.sportsci.org/resource/stats/quizanswers.html#2
http://www.sportsci.org/resource/stats/simple.html
http://www.sportsci.org/resource/stats/quizanswers.html#3
http://www.sportsci.org/resource/stats/simple.html
http://www.sportsci.org/resource/stats/quizanswers.html#4
http://www.sportsci.org/resource/stats/simple.html#spread
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 C 

 D 

answer · SEE 

6. A relative risk is 

 a risk of matrimony 

 an outcome statistic 

 a relative of the odds ratio 

 a relative frequency 

answer · Relative Frequency 

7. Differences between means are best thought about in terms of 

 p values 

 standard errors of the mean 

 percentages of the mean 

 standard deviations 

answer · Effect Size · Mean ± SD or Mean ± SEM? 

8. Dimension reduction 

 describes loss of precision. 

 describes factor analysis. 

 is an example of ANOVA. 

 is a weight-loss program. 

answer · Dimension Reduction 

9. Concerning reliability: 

 It impacts most on descriptive studies. 

 It can be expressed as an ICC. 

 It can be expressed as a CV. 

 It is quantified by 2-way ANOVA. 

answer · Reliability 

10. Concerning validity: 

 It impacts most on descriptive studies. 

 It is the correlation between true and observed values. 

 A valid measure must be reliable. 

 A reliable measure must be valid. 

answer · Validity 

11. Correct or incorrect expressions? 

 height = 175 ± 6 cm 

 VO2peak = 67 ± 5.1 ml/min/kg 

http://www.sportsci.org/resource/stats/quizanswers.html#5
http://www.sportsci.org/resource/stats/see.html
http://www.sportsci.org/resource/stats/quizanswers.html#6
http://www.sportsci.org/resource/stats/relfreq.html
http://www.sportsci.org/resource/stats/quizanswers.html#7
http://www.sportsci.org/resource/stats/effect.html
http://www.sportsci.org/resource/stats/meansd.html
http://www.sportsci.org/resource/stats/quizanswers.html#8
http://www.sportsci.org/resource/stats/dimenred.html
http://www.sportsci.org/resource/stats/quizanswers.html#9
http://www.sportsci.org/resource/stats/precision.html
http://www.sportsci.org/resource/stats/quizanswers.html#10
http://www.sportsci.org/resource/stats/valid.html
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 ICC = 0.87 

 CV = 1.4% 

answer · How Many Digits 

12. Confidence intervals... 

 are a new form of sprint training. 

 are calculated routinely by most stats packages. 

 define the likely range of a population value. 

 are inferior to p values for indicating magnitude of outcomes. 

answer · Confidence Intervals · What is a P Value? 

13. A correlation coefficient and its confidence interval are shown in the figure. 

 

We can conclude that: 

 The correlation is significant. 

 The true value of the correlation is likely to be 0.45. 

 More subjects should be tested. 

 A type II error has occurred. 

answer · More on the Lower and Upper Limits · Type II Errors 

14. Concerning tests and test statistics: 

 One-tailed tests are sometimes justified. 

 Test statistics should always be shown. 

 Chi-squared is a common test statistic. 

 P = 0.06 means there is no effect. 

answer · What is a P Value? · Using P Values 

15. Many samples, each of 100 observations, are drawn from a population in which there is a correlation of 

0.70 between two variables. How often would you expect to find a statistically significant correlation? 

 hardly ever 

 about one time in 100 

 about one time in 20 

 almost always. 

answer · Type I Errors 

16. What are appropriate comments about these data, which show mean weekly training durations for three 

groups of athletes? (Bars are SDs.) 

http://www.sportsci.org/resource/stats/quizanswers.html#11
http://www.sportsci.org/resource/stats/digits.html
http://www.sportsci.org/resource/stats/digits.html
http://www.sportsci.org/resource/stats/digits.html
http://www.sportsci.org/resource/stats/quizanswers.html#12
http://www.sportsci.org/resource/stats/generalize.html#example
http://www.sportsci.org/resource/stats/pvalues.html
http://www.sportsci.org/resource/stats/quizanswers.html#13
http://www.sportsci.org/resource/stats/generalize.html#more
http://www.sportsci.org/resource/stats/errors.html#typeII
http://www.sportsci.org/resource/stats/quizanswers.html#14
http://www.sportsci.org/resource/stats/pvalues.html
http://www.sportsci.org/resource/stats/pvalues.html#pusing
http://www.sportsci.org/resource/stats/quizanswers.html#15
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 Differences between all groups are substantial. (See Effect Size.) 

 The data should be analyzed by repeated-measures ANOVA. 

 Log transformation appears to be necessary before analysis. 

 Runners are lazier than cyclists. 

answer · One-Way ANOVA 

17. An outcome measured on a five-point scale (not at all to always)... 

 is an example of an ordinal variable. 

 has a behavior problem when it comes to residuals. 

 should be analyzed by logistic regression. 

 can be analyzed by ANOVA. 

answer ·Ordinal Dependent Variables 

18. Log transform a variable... 

 if the values are too big. 

 if the residuals (error) get bigger for bigger values of the variable. 

 if you don't get statistical significance. 

 if non-parametric tests are inappropriate. 

answer · Log Transformation · Non-Parametric Models 

19. Non-parametric tests usually... 

 are parametric tests in disguise.. 

 involve rank transformation of the dependent variable. 

 work for grossly non-normal data.. 

 should be attempted if parametric tests give p > 0.05. 

answer · Non-Parametric Models 

20. If we studied the effect of gender and body mass on sprint performance time, we would use the 

following model: 

 unpaired t test 

 ANCOVA 

 ANOVA 

 MANOVA 

answer 

21. Concerning multiple linear regression: 

 Use it to fit curves as well as straight lines. 

 Use it to control for the effect of numeric variables. 

http://www.sportsci.org/resource/stats/effect.html#effectsize
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 It gives misleading results for highly correlated independent variables. 

 Use it to fit multiple straight lines with several groups. 

answer · Multiple Linear Regression 

22. Repeated-measures models... 

 are used in descriptive studies. 

 can be analyzed by modeling variances. 

 are used when you have to repeat a failed test. 

 are straightforward to analyze with stats programs. 

answer ·  Repeated-Measure 

ANOVA · RM·ANOVA: Three or more trials and no between·subjects effect 

23. In a longitudinal study aimed at enhancing sport enjoyment, the following results were obtained 

 

We can conclude that: 

 Initial randomization to the two groups was poor. 

 There is one between- and one within-subject factor. 

 The time effect in the model is substantial. 

 The time effect in the model is significant. 

answer · Two trials plus... 

24. Concerning sample sizes for a controlled longitudinal study: 

 Sample size is proportional to (1 - r), where r = reliability correlation. 

 Controlled studies need 4x as many subjects as uncontrolled studies. 

 Get sample size "on the fly" by testing until you get an acceptable confidence interval. 

 None of the above. 

answer · What Determines Sample Size · Sample Size "On the Fly" 

25. The size of a sample needed for a cross-sectional study... 

 depends on the size of your research grant. 

 is inversely proportional to the square of the validities of your measures. 

 is a function of the largest effect you want to detect. 

 depends on how many student researchers you have on the project. 

answer · The Right Number of Subjects · What Determines Sample Size 

26. When you come home from climbing in the statistical mountains, you will tell the folks, amongst other 

things, that... 

 from now on you will show as few numbers as possible. 

 statistical modeling is no substitute for knowing your data. 
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 it's important to play with stats programs. 

 from now on you will test rather that estimate. 

answer · Summary 

 

http://www.sportsci.org/resource/stats/quizanswers.html#26
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